

ibm.com/redbooks

DB2 UDB ESE V8 non-DPF
Performance Guide for
High Performance OLTP and BI

Nagraj Alur
Peter Farrell

Philip Gunning
Saeid Mohseni

Swaminaathan Rajagopalan

Overview of DB2 UDB ESE V8 non-DPF
architecture

Best practices for optimal
performance

Problem determination
scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DB2 UDB ESE V8 non-DPF Performance Guide for
High Performance OLTP and BI

April 2004

International Technical Support Organization

SG24-6432-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (April 2004)

This edition applies to Version 8, Release 1 DB2 Universal Database Enterprise Server Edition
(ESE) (product number 5765-F41).

Note: Before using this information and the product it supports, read the information in
“Notices” on page xix.

Contents

Figures . ix

Tables . xv

Examples. xvii

Notices . xix
Trademarks . xx

Preface . xxi
The team that wrote this redbook. xxii
Become a published author . xxiv
Comments welcome. xxiv

Chapter 1. Introduction to performance management. 1
1.1 Introduction . 2
1.2 Performance management . 2
1.3 Types of monitoring. 5

1.3.1 Routine monitoring . 5
1.3.2 Online/realtime event monitoring . 6
1.3.3 Exception monitoring. 7

1.4 Problem determination methodology. 7

Chapter 2. DB2 UDB architecture overview . 13
2.1 Introduction . 14
2.2 Main components of DB2 . 14

2.2.1 High level overview of main DB2 components 14
2.2.2 High level overview of DB2 architecture and processes 17
2.2.3 Process model . 25
2.2.4 Memory model . 30

2.3 Single user transaction/query flow . 45
2.3.1 Transaction flow with connection concentrator enabled 46
2.3.2 Transaction flow with connection concentrator disabled. 48

2.4 Multi-user (concurrent) transaction/query flow . 52
2.5 Key performance knobs . 54

2.5.1 Configuration Advisor and AUTOCONFIGURE 54
2.5.2 Database Manager (DBM) configuration parameters 58
2.5.3 Database (DB) configuration parameters . 60
2.5.4 DB2 registry and environment variables . 63

© Copyright IBM Corp. 2004. All rights reserved. iii

2.6 Performance monitoring facilities . 66
2.6.1 CLI/ODBC/JDBC trace . 67
2.6.2 Database System Monitor. 68
2.6.3 DB2 administration notification log . 79
2.6.4 db2batch . 82
2.6.5 db2diag.log . 85
2.6.6 DB2 Performance Expert . 88
2.6.7 Design Advisor . 93
2.6.8 Explain and Visual Explain . 94
2.6.9 Heath Monitor and Health Center . 100
2.6.10 Memory Tracker . 103
2.6.11 Memory Visualizer. 103

Chapter 3. Application design and system performance considerations107
3.1 OLTP and BI characteristics . 108

3.1.1 OLTP characteristics. 108
3.1.2 BI characteristics. 109

3.2 Key performance drivers . 110
3.3 Application design considerations . 111

3.3.1 Table design . 111
3.3.2 MDC design considerations . 118
3.3.3 MQT/AST design considerations . 128
3.3.4 Index design . 137
3.3.5 Table space design . 141
3.3.6 Writing efficient SQL . 155
3.3.7 Concurrency . 186

3.4 System environment considerations . 198
3.4.1 I/O placement considerations . 198
3.4.2 Log considerations . 207
3.4.3 Monitor switch settings . 223
3.4.4 Connection considerations . 226
3.4.5 Buffer pool considerations. 238
3.4.6 Locking considerations . 260
3.4.7 Package cache considerations . 269
3.4.8 Catalog cache considerations . 272
3.4.9 Sort considerations . 275
3.4.10 Other memory considerations . 283
3.4.11 Miscellaneous considerations . 294

Chapter 4. Command and utility considerations 303
4.1 Introduction . 304
4.2 Backup . 304

4.2.1 Brief description . 305

iv DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

4.2.2 Performance considerations . 305
4.2.3 Best practices . 305

4.3 Export . 307
4.3.1 Brief description . 308
4.3.2 Performance considerations . 308
4.3.3 Best practices . 308

4.4 Import . 309
4.4.1 Brief description . 309
4.4.2 Performance considerations . 309
4.4.3 Best practices . 310

4.5 Load . 311
4.5.1 Brief description . 311
4.5.2 Performance considerations . 312
4.5.3 Best practices . 313

4.6 Reorg. 321
4.6.1 Brief description . 321
4.6.2 Performance considerations . 322
4.6.3 Best practices . 322

4.7 Restore . 323
4.7.1 Brief description . 323
4.7.2 Performance considerations . 323
4.7.3 Best practices . 324

4.8 Runstats . 326
4.8.1 Brief description . 326
4.8.2 Performance considerations . 327
4.8.3 Best practices . 328

Chapter 5. Operating system considerations . 331
5.1 Introduction . 332
5.2 AIX platform. 332

5.2.1 Operating system considerations . 332
5.2.2 Memory considerations . 335
5.2.3 Disk and filesystem considerations . 346
5.2.4 Monitoring and problem determination tools 363

5.3 Windows platform . 381
5.3.1 Operating system considerations . 382
5.3.2 Memory considerations . 383
5.3.3 Disk and filesystem considerations . 386
5.3.4 Monitoring and problem determination tools 387

Chapter 6. Problem determination scenarios . 395
6.1 Introduction . 396
6.2 DB2 hypotheses hierarchy . 399

 Contents v

6.2.1 DB2 database server system resource constraints. 400
6.2.2 DB2 system resource constraints . 400

6.3 Exception event scenarios . 412
6.3.1 Lock waits due to default LOCKTIMEOUT value (OLTP) 413
6.3.2 Poor SQL performance due to missing indexes (OLTP). 426
6.3.3 Poor SQL performance due to unused MQTs (BI) 437

6.4 Routine monitoring scenarios . 448
6.4.1 Deteriorating space utilization conditions (BI) 449
6.4.2 Deteriorating buffer pool hit ratios (OLTP) 456

6.5 Online/Realtime monitoring scenarios. 462
6.5.1 Lock contention (OLTP) . 463

Appendix A. DB2 UDB ESE Version 8 performance enhancements . . . 473
A.1 Introduction . 474
A.2 Application-related performance enhancements 474

A.2.1 Multidimensional clustering. 474
A.2.2 MQT enhancements . 475
A.2.3 Compression of NULLS and DEFAULT . 475
A.2.4 Load enhancements . 476

A.3 System-related performance enhancements . 476
A.3.1 Prefetching enhancements . 476
A.3.2 Faster page cleaners . 477
A.3.3 Connection concentrator. 477
A.3.4 Type 2 indexes . 477
A.3.5 Stored procedures and UDFs thread-based model 478
A.3.6 DMS container enhancements . 478
A.3.7 RUNSTATS enhancements . 478
A.3.8 Logging enhancements . 478
A.3.9 Manageability enhancements . 479

A.4 DB2 UDB Version 8.1.4 . 480
A.4.1 Backup compression . 480
A.4.2 Range-clustered tables. 480
A.4.3 Direct I/O support on AIX . 481
A.4.4 Asymmetric index splitting . 481
A.4.5 Buffer pool memory allocation . 482
A.4.6 Page cleaning enhancements . 482
A.4.7 Lock deferral . 482
A.4.8 Improved sort performance. 483

Appendix B. Workloads used in the scenarios . 485
B.1 Introduction . 486
B.2 DTW workload . 486
B.3 EBIZ database . 486

vi DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

B.4 Trade2 database and application . 487
B.5 WebSphere Performance Tools (WPT) . 488

Related publications . 491
IBM Redbooks . 491
Other publications . 491
Online resources . 493
How to get IBM Redbooks . 493
Help from IBM . 493

Index . 495

 Contents vii

viii DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figures

1-1 Performance management cycle . 4
1-2 A typical problem determination methodology . 8
1-3 A typical DB2 application environment and hypotheses hierarchy 10
2-1 High level overview of main DB2 components. 14
2-2 High level overview of DB2 architecture and processes 17
2-3 Connection concentrator concept . 20
2-4 Connection concentrator operation . 21
2-5 Simplified view of the DB2 UDB Process Model 26
2-6 Types of memory used by DB2 . 31
2-7 The memory used by the database manager . 32
2-8 Single user transaction/query flow with CC enabled 46
2-9 Single user transaction/query flow without connection concentrator . . . 49
2-10 Configuration Advisor wizard . 56
2-11 DB2 Snapshot Monitor syntax and data collection 72
2-12 Viewing Event Monitor output . 78
2-13 The DB2 administration notification log . 80
2-14 db2diag.log header information . 85
2-15 Main components of DB2 Performance Expert 90
2-16 Performance Expert Agent and system environment 91
2-17 DB2 PE for Multiplatforms environment structure 92
2-18 Design Advisor. 94
2-19 The relationship of EXPLAIN tables. 97
2-20 The Explain SQL Statement . 98
2-21 The Visual Explain access path . 99
2-22 The Health Center . 101
2-23 Health indicators . 102
2-24 Memory Tracker . 103
2-25 The Memory Visualizer . 105
3-1 Traditional RID clustering and Multidimensional clustering 119
3-2 Row index vis-a-vis MDC block index . 120
3-3 MDC dimensions . 121
3-4 The cell for dimension values (2002, USA, yellow) 122
3-5 MQT/AST look-aside concept . 129
3-6 Deferred Refresh mechanism . 131
3-7 Overview of the design of REFRESH DEFERRED MQTs/ASTs. 135
3-8 DB2 striping with containers . 147
3-9 Extent allocation for DMS table space . 151
3-10 DB2 prefetch example using RAID-5 . 154

© Copyright IBM Corp. 2004. All rights reserved. ix

3-11 The stages of the SQL compiler . 156
3-12 DB2 predicate types and components where they are evaluated 161
3-13 Lock hierarchy . 187
3-14 Lock type compatibility . 191
3-15 Deadlock scenario . 193
3-16 Cursor-based deadlocks without FOR UPDATE clause 196
3-17 Default database directory structure . 199
3-18 DB2 objects placement . 200
3-19 AIX iostat command results . 203
3-20 List tablespace containers output . 206
3-21 Output of table snapshot using SQL snapshot function. 207
3-22 List application and application snapshot for UOW log space used . . 215
3-23 Command line database snapshot containing log information 216
3-24 Notification log displaying log full condition . 217
3-25 Database snapshot showing the commits and rollback counts 220
3-26 Log filesystem utilization health indicator in Health Center 222
3-27 DB2 Snapshot Monitor syntax and data collection 224
3-28 Database manager snapshot on Agent information. 234
3-29 Database snapshot - applications connected currently 237
3-30 Buffer pool flow . 239
3-31 The number of buffers, hit ratios, response times, and paging 252
3-32 Output of buffer pool snapshot on the database and calculation. 255
3-33 Buffer pool snapshot showing Block I/O value. 255
3-34 Database snapshot showing prefetch details and calculation 256
3-35 Process of lock escalation . 261
3-36 Database snapshot for lock information. 263
3-37 Database snapshot - package cache monitor elements 271
3-38 Database snapshot - catalog cache monitor elements 274
3-39 Overflowed sorts . 277
3-40 Non-overflowed piped sorts . 278
3-41 Database manager snapshot - sort monitor elements 280
3-42 Database snapshot - sort monitor elements . 280
3-43 Database snapshot - database heap memory usage 285
3-44 Application snapshot - application memory usage by all agents 286
3-45 Output of REORGCHK command . 295
5-1 Simplified view of 32-bit AIX memory architecture. 336
5-2 32-bit environment Segment Register usage. 341
5-3 Output of ipcs -mb command. 344
5-4 nmon memory statistics . 345
5-5 Simplified view of disk subsystem architecture 347
5-6 lsfs command output . 359
5-7 Default ulimit settings. 359
5-8 ulimit values for db2 processes . 360

x DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

5-9 vmtune -a output (AIX 4.3.3) . 361
5-10 vmstat -v output (AIX 5.2) . 361
5-11 Relationship between filesystems and disks . 364
5-12 Mapping a filesystem to disks . 365
5-13 Sample filemon script. 367
5-14 Sample filemon output . 368
5-15 iostat, 2-second sample interval . 369
5-16 lsps command showing paging space utilization 369
5-17 Memory Visualizer display . 371
5-18 nmon interactive display . 372
5-19 ps -elf command . 374
5-20 ps aux example . 375
5-21 ps avx example . 375
5-22 sar default output . 376
5-23 Output of svmon -P command . 377
5-24 vmstat, 2-second sample interval . 379
5-25 Extract from vmtune -a output . 380
5-26 vmtune default output . 381
5-27 Windows 2000 Disk Management tool. 389
5-28 filemon utility display . 390
5-29 Adding a counter to the Performance Monitor graph 391
5-30 Performance Monitor . 392
5-31 Task Manager process display ranked by CPU utilization 393
5-32 Task Manager Select Column panel . 394
6-1 A typical DB2 application environment and hypotheses hierarchy . . . 397
6-2 DB2 hypotheses hierarchy. 399
6-3 lock timeout example update statement . 414
6-4 lock timeout example select statement . 414
6-5 LOCKTIMEOUT scenario architecture. 415
6-6 Recommended monitor switch settings for OLTP routine monitoring . 415
6-7 ping persian . 417
6-8 nmon output . 418
6-9 WebSphere Application Server console . 419
6-10 Database configuration connection-oriented parameters 420
6-11 Snapshots to determine current connections. 421
6-12 Instance-level sort parameters and values . 422
6-13 Database-level sort parameters and values . 422
6-14 Database snapshot for locks . 424
6-15 Current value of LOCKTIMEOUT . 424
6-16 Custom query for missing index scenario . 426
6-17 Missing indexes configuration environment . 427
6-18 System load while running application. 429
6-19 Buffer pool snapshot data . 430

 Figures xi

6-20 Database package and catalog cache sizes . 431
6-21 Package and catalog cache snapshot data . 431
6-22 Creating the Event Monitor . 432
6-23 Flushing Event Monitor data to tables . 432
6-24 Write to table Event Monitor data showing CPU usage and so on . . . 433
6-25 Write to table Event Monitor data showing SQL statement 433
6-26 Visual Explain output . 434
6-27 Indexes on the CUSTOMER table . 435
6-28 Checking when runstats last ran on the customer table 435
6-29 Design Advisor recommendations . 436
6-30 Unused MQTs configuration environment . 438
6-31 Event monitors for unused MQT scenario . 440
6-32 Applications running during unused MQT scenario 440
6-33 Connection Event Monitor output for unused MQT scenario 441
6-34 Statement Event Monitor output for unused MQT scenario. 442
6-35 Statement Event Monitor data for unused MQT scenario - SQL 443
6-36 Visual Explain output for unused MQT scenario 444
6-37 Definition of cube_ast_view . 445
6-38 Identifying tables dependent on MQTs or Summary Tables 446
6-39 DDL for the cube_ast MQT . 446
6-40 Visual Explain for revised SQL . 447
6-41 Configuration for MDC scenario. 450
6-42 df command showing filesystem utilization . 451
6-43 Finding DMS tablespace high water marks . 452
6-44 Identifying table space usage in a table space 453
6-45 Identifying an MDC table . 453
6-46 Identifying dimension columns of CUSTOMER_MDC table 454
6-47 Number of rows in CUSTOMER_MDC table . 454
6-48 Output from cell count table . 455
6-49 Query showing RpC count for candidate dimensions 455
6-50 Buffer pool hit ratio scenario configuration. 457
6-51 Buffer pool snapshot . 458
6-52 Determining sizes of tables using a specific buffer pool 460
6-53 Buffer pool hit ratio & response time as function of buffer pool size . . 461
6-54 Uncommitted SQL update statement . 464
6-55 Configuring Health Monitor Global Health Indicators. 465
6-56 Health Monitor - setting lock alerts. 466
6-57 Health Monitor Alert . 467
6-58 Alert e-mail . 467
6-59 Lock information from database snapshot . 468
6-60 Current value of LOCKTIMEOUT . 468
6-61 Applications running. 469
6-62 Additional lock information from database snapshot 469

xii DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

6-63 db2inst1.nfy file . 470
6-64 Current values of MAXLOCKS and LOCKLIST 470
6-65 Trade 2 application . 487

 Figures xiii

xiv DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Tables

2-1 DB2 processes per instance - no connections & no active databases . 28
2-2 Additional DB2 processes per instance with connections 28
2-3 Additional DB2 processes for each active database 29
2-4 Database manager shared memory heaps . 34
2-5 Database shared memory heaps. 37
2-6 App. group shared memory and app. shared memory heaps 40
2-7 Agent private memory heaps . 42
2-8 Agent/Application Shared Memory heaps . 44
2-9 Tuning knobs at each application call . 50
2-10 AUTOCONFIGURE command options . 58
2-11 Database Manager configuration parameters . 59
2-12 Database configuration parameters. 61
2-13 Registry and environment performance variables for all platforms 64
2-14 Some of the performance variables for the AIX platform 65
2-15 Performance registry variables for Windows NT/ 2000/2003 platform. . 66
2-16 Snapshot Monitor switches . 70
2-17 Event Monitor event types . 73
2-18 Write to table Event Monitor target tables . 75
2-19 Administration notification log NOTIFYLEVEL. 81
2-20 Diagnostic log DIAGLEVEL . 85
2-21 The function activities . 86
2-22 DB2 UDB - the most common engine components 87
2-23 DB2 explain facility. 95
2-24 EXPLAIN tables . 96
3-1 OLTP versus BI characteristics . 110
3-2 Refresh considerations . 132
3-3 Container types for DMS and SMS table spaces. 146
3-4 Page size, row and column limits. 150
3-5 Predicate processing for different queries . 163
3-6 Query rewrite predicates . 165
3-7 Lock modes shown in order of increasing control over resources 188
3-8 Summary of different isolation levels . 192
3-9 Guidelines for choosing an isolation level . 192
3-10 Table space activity/priority compatibility matrix 202
3-11 Snapshot Monitor switches . 223
3-12 Lock space usage details. 260
5-1 A summary of RAID types . 351
5-2 Mirroring/Striping decision matrix. 356

© Copyright IBM Corp. 2004. All rights reserved. xv

5-3 Operating system I/O variables . 360
5-4 Suggested tool usage . 363
5-5 svmon output . 378
5-6 Windows operating system characteristics . 382
5-7 Suggested tool usage . 388
6-1 Typical problem areas associated with DB2 app. performance. 398
6-2 LOCKTIMEOUT scenario configuration. 414
6-3 Missing indexes scenario configuration . 427
6-4 Unused MQTs scenario configuration . 437
6-5 Deteriorating space utilization scenario configuration 450
6-6 Buffer pool hit ratio scenario configuration . 457

xvi DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Examples

2-1 Database manager and database configuration parameters set 57
2-2 Enabling JDBC trace in DB2 UDB Version 8 . 67
2-3 Adding properties to a datasource in WebSphere 68
2-4 db2batch input file . 82
2-5 db2batch sample output. 83
3-1 Counting the number of cells . 127
3-2 SQL to examine rows per cell . 127
3-3 Dynamic SQL with literals and parameter markers 159
3-4 Sample SQL statement before and after query rewrite 166
3-5 Predicate type of each predicate using the original query 167
3-6 Predicate details from EXPLAIN . 168
3-7 OPTIMIZE FOR n ROWS . 181
3-8 FETCH FIRST n ROWS ONLY . 182
3-9 Data type conversions example. 183
3-10 Compound SQL . 184
3-11 Cursor definition with FOR UPDATE clause . 196
3-12 Table space snapshot . 204
3-13 Database manager snapshot . 229
3-14 Snapshot showing block remote cursor information 292
4-1 Determining backup buffer size . 324
6-1 dbm snapshot for connections . 402
6-2 db snapshot for connections . 403
6-3 dbm snapshot for sorting . 404
6-4 db snapshot for sorting . 405
6-5 db snapshot for locking . 406
6-6 db snapshot for buffer pools . 408
6-7 db snapshot for catalogcache_sz and pckcachesz 410

© Copyright IBM Corp. 2004. All rights reserved. xvii

xviii DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2004. All rights reserved. xix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Distributed Relational Database
Architecture™
DB2®
DB2 Connect™
DB2 Universal Database™
DB2®
DRDA®

Enterprise Storage Server®
eServer™
IBM®
Lotus®
OS/2®
OS/390®
POWER4™
pSeries®

Redbooks™
Redbooks (logo) ™
Sequent®
WebSphere®
xSeries®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

xx DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Preface

This IBM® Redbook will help you to develop, monitor, and tune DB2® UDB
Version 8.1 non-database partitioning feature (non-DPF) Online Transaction
Processing (OLTP) and Business Intelligence (BI) applications in the AIX® and
Windows® environments.

This book is organized as follows:

� Chapter 1 provides a general overview of performance management
concepts, and describes the high-level tasks that DBAs typically perform to
ensure that their DB2 environment is performing adequately.

� Chapter 2 provides a general overview of the architecture of DB2 UDB V8
from a performance management perspective. It also describes the flow of a
transaction/query as it interacts with various processes and resources in DB2,
and identifies potential performance bottlenecks along the way—both in a
single user environment with no contention, and in a multi-user environment
involving contention for various resources.

� Chapter 3 describes the key performance drivers that impact OLTP and BI
performance, and suggest best practices for achieving superior DB2 OLTP
and BI performance. Application design and system performance
considerations are discussed.

� Chapter 4 describes key performance considerations associated with
executing DB2 commands and utilities, and suggests best practices for
achieving superior performance.

� Chapter 5 provides an overview of AIX and Windows systems performance
considerations that impact DB2 performance, and includes a discussion of
operating system, memory, and disk considerations and recommendations. It
also describes some of the performance monitoring and management tools
available.

� Chapter 6 discusses some commonly encountered performance problems in
a DB2 OLTP and BI environment, and describes scenarios for identifying and
resolving such problems

Attention: The scope of this book is a DB2 UDB Version 8.1 non-DPF
environment for the AIX and Windows platforms, and does not include a
discussion of federated database functionality. It is aimed at a target audience
of experienced DB2 application developers and database administrators
(DBAs).

© Copyright IBM Corp. 2004. All rights reserved. xxi

� Appendix A describes the main performance enhancements in DB2 UDB
ESE Version 8 and the latest performance enhancements in DB2 UDB
Version 8.1.4.

� Appendix B describes the applications used in the problem scenarios. It
includes scripts and sample code used in the various problem determination
scenarios.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Nagraj Alur is a Project Leader with the IBM International Technical Support
Organization, San Jose Center. He has more than 28 years of experience in
DBMSs, and has been a programmer, systems analyst, project leader,
consultant, and researcher. His areas of expertise include DBMSs, data
warehousing, distributed systems management, and database performance, as
well as client/server and Internet computing. He has written extensively on these
subjects and has taught classes and presented at conferences all around the
world. Before joining the ITSO in November 2001, he was on a 2-year
assignment from the Software Group to the IBM Almaden Research Center,
where he worked on Data Links solutions and an eSourcing prototype.

Peter Farrell is a Consulting IT Specialist in Australia. He has worked with
computer systems for over 30 years and has extensive experience in operating
systems and networking software development. He also has many years of
experience running relational database benchmarks. He has over 15 years of
experience in UNIX® technical support and has a particular interest in systems
performance. He has worked at IBM for four years and before that was with
Sequent® Computer Systems. His current areas of responsibility include
benchmarking and performance tuning.

Philip Gunning is an independent DB2 consultant. He the founder of Gunning
Technology Solutions, LLC. He has 17 years of experience in IT, and seven years
with DB2 UDB. He holds a Masters degree from DeSales University. His areas of
expertise include performance and tuning, database administration, and
knowledge transfer. He has written extensively on DB2 UDB performance and is
the author of the DB2 UDB V8 Handbook for Linux, UNIX, and Windows, IBM
Press, June 2003. He is a member of the IDUG North America Conference
Planning Committee and is a regular contributor to the db2-l list server and
dbazine.com.

Saeid Mohseni is a DB2 education specialist with IBM Sweden. He has 23 years
of experience in the Information Technology field, and 15 years of experience

xxii DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

with the DB2 family of products. He holds a degree in Information Technology
from Sweden. His areas of expertise include database administration/architect,
performance tuning, database recovery, and system development using DB2.

Swaminaathan Rajagopalan is a Database Consultant with Wipro
Technologies, a leading software services company in India. He has 7 years of IT
experience, and hold a Masters Degree in Software Engineering from BITS
Pilani, India. He is an IBM Certified solutions expert - DB2 UDB V7.1 Database
Administration for OS/390®, and IBM certified solutions expert - DB2 UDB V7.1
Database Administration for UNIX, Linux, Windows and OS/2®. He has been
working as a DB2 DBA on systems and applications for leading financial
companies in the USA on assignment from Wipro Technologies. His areas of
expertise include DB2 on OS/390, DB2 UDB on Linux, UNIX and Windows, DB2
for AS400, Oracle and Sybase. He has contributed articles to the Xephon DB2
update magazine.

In producing this redbook, we borrowed heavily from many IBM DB2 manuals,
IBM classroom materials, IDUG presentations, Data Management Technical
Conference presentations, IBM Press books, articles and other IBM
Redbooks™, which are listed in “Related publications” on page 491. We hereby
acknowledge their significant contributions.

Thanks in particular to the very constructive comments and contributions of
Steve Rees, Adam Storm, Calisto Zuzarte, Berni Schiefer, Dwaine Snow, Marcia
Miskimen, and Doreen Stolz-Hofmann.

Thanks also to the following people for their contributions to this project:

Adrian Chan
Leslie Cranston
Grant Hutchison
Srilata Kammila
Jason Racicot
Jeff Riihimaki
Kelly Rodger
Peter Shum
Roger Zheng
IBM Toronto Laboratory

Bruce Lindsay
Guy Lohman
IBM Almaden Research Center

Mark Latondre
IBM USA

 Preface xxiii

Emma Jacobs
International Technical Support Organization, San Jose Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

xxiv DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction to performance
management

In this chapter we provide a general overview of performance management
concepts. We also describe the high-level tasks that DBAs typically perform to
ensure that their DB2 environment is performing adequately and meeting
previously agreed-to service level objectives.

The topics covered are:

� Performance management

� Types of monitoring

� Problem determination methodology

1

© Copyright IBM Corp. 2004. All rights reserved. 1

1.1 Introduction
One of the main objectives of an IT organization is to ensure that its
infrastructure delivers the required performance to ensure that business
objectives are continuously met in a constantly evolving and changing business
environment.

This requires the IT professional to adopt a strategy that is both proactive and
reactive to conditions and events that would tend to adversely impact IT systems.

The proactive effort involves a number of tasks, including the following:

� Capacity planning of IT resources

� Choosing the most effective IT architecture for the current and anticipated
workload

� Adopting best practices in application design, development, and deployment

� Performing rigorous regression testing prior to deployment in a production
environment

� Performing routine monitoring of key performance indicators to forestall
potential performance problems, as well as gather information for capacity
planning

The reactive effort involves having a well-defined methodology for identifying the
root cause of a problem, and resolving the problem by applying best practices.

In the following sections, we introduce the concept of performance management,
describe the different types of monitoring available, and discuss a typical
methodology for effective performance problem determination.

1.2 Performance management
Most contemporary environments range from standalone systems to complex
combinations of database servers and clients running on multiple platforms.
Critical to all these environments is the achievement of adequate performance to
meet business requirements. Performance is typically measured in terms of
response time, throughput, and availability.

The performance of any system is dependent upon many factors including
system hardware and software configuration, number of concurrent users, and
the application workload.

2 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

These performance objectives must be:

� Realistic in that they should be achievable given the current state of the
technology available. For example, setting sub-second response times to
process millions of rows of data is not achievable.

� Reasonable in that while the technology may be available, the business
processes may not require stringent performance demands. For example,
demanding sub-second response times for analytic reports that need to be
studied and analyzed in detail before making a business decision could be
considered unreasonable.

� Quantifiable in that the objectives must use quantitative metrics (numbers,
ratios, percentages) instead of qualitative metrics (such as very good,
average, and so on). An example of a quantitative metrics could be 95% of a
particular transaction time must have sub-second response time, while a
qualitative metric could be that system availability should be very high.

� Measurable in that you have to be able to measure the performance in order
to determine conformance or non-conformance with performance objectives.
Units of measurement include response time for a given workload,
transactions per second, I/O operations, CPU use, or a combination of the
above. Setting a performance objective of sub-second response times for a
transaction is moot if there is no way to measure to determine whether this
objective is being met.

Note: Performance management is a complex issue, and can be defined as
modifying the system and application environment in order to satisfy
previously defined performance objectives.

Important: Without well-defined performance objectives, performance is a hit
or miss exercise, with no way of delivering on any service level agreements
that may be negotiated with users.

 Chapter 1. Introduction to performance management 3

Figure 1-1 highlights the performance management cycle.

Figure 1-1 Performance management cycle

Performance management is an iterative process that involves constant
monitoring to determine whether performance objectives are being met even as
environments and workloads change over time. When performance objectives
are not being met, then appropriate changes must be made to the hardware
and/or software environment, as well as the performance objectives themselves,
in order to ensure that they will be met.

From a database perspective, performance problems can arise out of a
combination of poor application and system design, inadequate CPU, memory
disk, and network resources, and suboptimal tuning of these resources.

Besides using monitoring to determine whether or not performance objectives
are being met, monitoring is also used to:

� Assess the current workload of a system and track its changes over time for
capacity planning purposes.

Performance
Objectives
being met?

MODIFY the managed environment
and/or performance objectives

accordingly

May require exception (more
detailed) monitoring to obtain the

information necessary to determine
the cause

ESTABLISH performance objectives

ANALYZE cause, EVALUATE
alternatives, and CHOOSE course

of action

MONITOR the system

no

Document results

yes

DESIGN & IMPLEMENT systems to
achieve these objectives

4 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� Take a proactive approach to performance management by forestalling and
resolving potential problems that could impede the achievement of
performance objectives.

� React to unexpected problems by assisting in problem diagnosis.

1.3 Types of monitoring
There are typically three types of monitoring available to a DBA as follows:

� Routine monitoring
� Online/realtime event monitoring
� Exception monitoring

Each of these types of monitoring is briefly described in the following sections.

1.3.1 Routine monitoring
The objectives of routine monitoring are to:

� Collect information about the workload and stress on the system during
periods of normal and peak periods for capacity planning purposes, as well as
for identifying potential performance problems down the road

� Ascertain conformance of the system with performance objectives and record
deviations, if any

The key to routine monitoring is that it involves analyzing the information
collected over a period of time (long history), and then taking corrective action if
required to address performance objectives. In other words, there can be a
significant delay between information collection and a corrective response.

Attention: In order to meet performance objectives currently and in the future,
the DBA needs to develop and execute an appropriate monitoring strategy
capable of delivering the required quality of service.

Important: Performance management can only be exercised in controlled
environments such as production systems or regression systems.

Remember, “You can not manage what you can not control, and you can not
control what you can not measure”.

Therefore, test and development systems by definition are inherently
unmanageable.

 Chapter 1. Introduction to performance management 5

An example of the results of such monitoring could be a realization that the
number of transactions has been growing steadily at a 1% rate every week,
which would necessitate an upgrade of the server in 12 months in order to
continue to meet response time objectives.

Another characteristic of such monitoring is the critical need to minimize the
overhead it introduces, given its requirement to be running constantly or during
peak periods.

In some literature, this type of monitoring is further subclassified into continuous
monitoring (for normal loads) and periodic monitoring (for peak loads).

From a DB2 perspective, routine monitoring can help identify the root causes of
such potential performance problems as:

� Buffer pool size
� Dynamic cache size
� Heap sizes
� Locklist and maxlocks sizes
� Lock mode and isolation issues
� Disorganized table spaces
� Outdated runstats
� Long running SQL
� Log and table space utilization

1.3.2 Online/realtime event monitoring
The objective of online/realtime event monitoring is to be on the lookout for
specific events that may either identify a specific problem, or portend problems in
the near to immediate future, in order to take prompt corrective action (the near
to immediate future implies minutes rather than hours).

The key to this type of monitoring is that it involves looking for specific events in a
short interval of time (short history) that are known to degrade performance, and
having the option to take prompt corrective action to rectify the problem. In other
words, there probably needs to be a very short delay between information
collection and a corrective response. One example of such an event is the
occurrence of an excessive number of deadlocks in a short period of time, a
problem that would need to be addressed promptly in order to ensure that
business objectives are not being compromised.

Here too, the need to minimize the overhead of such monitoring is critical, given
that most problems manifest themselves at peak loads.

From a DB2 perspective, online/realtime event monitoring can help identify
potential performance problems such as:

6 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� Deadlocks
� Long waits and timeouts
� Long running SQL

1.3.3 Exception monitoring
Exception monitoring is required when you discover or suspect a problem, and
need to identify its root cause in order to apply the appropriate corrective action
to fix the problem.

Unlike routine and event monitoring, which are planned occurrences and are
designed to have low overheads on the managed system, exception monitoring
is driven by problem situations and may impose significant overheads on the
managed system. An example of a need for exception monitoring is when the
administrator receives a significant number of user complaints about degraded
response times, or inability to access the application. The administrator then
needs to initiate a series of monitoring actions to home in on the root cause of
the problem. This typically involves coming up with a set of hypotheses that could
account for the perceived behavior, and then systematically verifying each one in
turn until the problem is diagnosed.

From a DB2 perspective, exception monitoring can apply to any of the items
identified via routine and online/realtime event monitoring.

1.4 Problem determination methodology
Users may experience performance problems for reasons ranging from:

� Network connectivity and bandwidth constraints
� System CPU, I/O and memory constraints
� Software configuration limitations and constraints
� Poor systems administration skills
� Poor application design
� Poor assumptions about the workload

Given the multitude of possible causes of poor performance, a systematic and
consistent approach to problem diagnosis is recommended to ensure prompt
and effective resolution of performance problems.

Figure 1-2 on page 8 describes a typical sequence of steps to be followed when
diagnosing performance problems.

 Chapter 1. Introduction to performance management 7

Figure 1-2 A typical problem determination methodology

The entire sequence of steps is triggered by events such as a user complaining
about poor response times, error messages appearing on users’ screens, alerts
or notifications on the DBA console, and alerts in routine monitoring reports.

These symptoms must be evaluated for criticality, as shown by the decision box
(“Needs immediate attention”) in Figure 1-2.

� Symptoms that are sporadic and non-disruptive need no immediate action,
other than to potentially trigger exception, online/realtime, or additional
routine monitoring to gather additional information for possible corrective
action in the future.

� Symptoms that recur frequently and disrupt business processes require
prompt attention to avoid adverse business impact. We cover some of these
scenarios in this book.

� Catastrophic events such as a failure of the system, the application server, or
the database server also need immediate attention such as an immediate
restart. These scenarios are not discussed in this book.

N eeds Im m ediate
Atten tion?

yesn o

Form ulate one or m ore
hypotheses

M ay requ ire exception (m ore
deta iled) m on ito ring to ob ta in the
in fo rm ation necessary to va lidate

o r re ject a hypothesis

App ly recom m ended best
p ractices

 S ystem
P erfo rm in g

O K ?

Iden tify the sym ptom s

Identify the root cause o f the
p roblem th rough hypothesis

va lidation

V erify the va lid ity o f each
hypothesis in tu rn by review ing

key indicators

yes

D ocum ent fo r
fu ture re fe rence

D ocum ent for
fu tu re re feren ce

n o

8 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Based on the symptoms and a knowledge base of prior experiences (both
external and internal), you should formulate one or more hypotheses as the
potential root cause of the problem.

Each hypothesis should then be tested in turn using all available metrics
associated with the application under consideration — this includes system
resources, network resources, Web application server resources, and database
server resources. Sometimes, the metrics available from routine monitoring and
online/realtime event monitoring may be inadequate to validate or reject a
particular hypothesis. In such cases, you may have to request additional
diagnostic information through more detailed monitoring levels either on the
production system itself, or an available comparable regression system. Such
monitoring is often referred to as exception monitoring.

Once a hypothesis is validated and the root cause problem has been identified,
best practices specific to the root cause problem can be applied to attempt to
resolve the problem.

Once the root cause problem has been resolved, then the steps executed and
the knowledge gained should become part of the knowledge base to assist in
resolving future problem situations.

Important: Best practices guidelines are based on user experiences for a
given workload and environment, and may or may not provide beneficial
results in your particular environment. Therefore, a thorough understanding of
the fundamentals of the technical architecture and design is required to
explore other alternatives, when the documented best practices fail to provide
relief.

Problem resolution in such cases tends to be an iterative process, where the
application of a best practice may result in the manifestation of new
symptoms, and the formulation of a fresh set of hypotheses.

Attention: When applying best practices recommendations, it is vital that
changes be implemented one at a time and the impact measured before
embarking on further changes. Implementing multiple changes simultaneously
may make it difficult to assess the impact of a specific change and develop a
useful knowledge base for future performance tuning efforts.

A knowledge base of all successful and unsuccessful changes in your
environment should be accumulated to develop best practices and
recommendations for your own, unique environment.

 Chapter 1. Introduction to performance management 9

Figure 1-3 describes one possible DB2 application environment, having both
remote and local clients accessing a DB2 database. While this environment
shows the Web application server and the database server on different systems,
other application environments may be simpler or more complex depending upon
an organization’s unique configuration and application workload requirements.

Figure 1-3 A typical DB2 application environment and hypotheses hierarchy

Figure 1-3 also describes the hypotheses validation hierarchy that should
typically be followed during problem diagnosis of DB2 applications in general.

Web Application
Server (WAS)

Network

Network

DB2
Database Server

Local
Clients

Remote
Clients

Connectivity
Bandwidth

System CPU
System I/O
System Memory
DB2 related

Hypotheses
Hierarchy

Connectivity
Bandwidth

System CPU
System I/O
System Memory
WAS related

10 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Assuming that a performance problem such as erratic or poor response times
has been reported by a remote user/client, the problem determination
methodology should systematically home in on the potential cause of the
problem via the hierarchy shown in Figure 1-3 on page 10.

For the environment shown in Figure 1-3, the process should sequentially involve
eliminating the cause of the problem as being network (between the client and
the Web application server)-related, Web application server system (CPU, I/O,
memory)-related, Web application server-related (configuration settings),
network-related, database server system (CPU, I/O, memory)-related, or
database server (configuration settings, routine DBA maintenance activities such
as collecting statistics or reorganizing tables, and finally application
design)-related.

Note: Depending upon the triggering event of the performance problem, it
may be possible to skip certain hypotheses validation altogether—for
example, when an explicit alert about a lock escalation threshold being tripped
is the triggering event, you can ignore hypotheses such as network
connectivity and bandwidth constraints, Web application server constraints,
CPU and I/O constraints (in both the Web application server and the DB2
database server) as a potential cause of the problem.

Important: The Figure 1-3 sequence is strongly recommended to ensure that
needless effort is not spent by the DBA on troubleshooting DB2, when the root
cause of the performance problem experienced by the user potentially exists
elsewhere.

For example, network bandwidth constraints or resource contention in the
Web application server can manifest as erratic or poor response times for a
user of a DB2 application, even when the DB2 system and application is tuned
optimally.

 Chapter 1. Introduction to performance management 11

12 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Chapter 2. DB2 UDB architecture
overview

In this chapter we provide a general overview of the architecture of DB2 UDB
from a performance management perspective. We also describe the flow of a
transaction/query as it interacts with various processes and resources in DB2,
and identify potential performance bottlenecks along the way—both in a single
user environment with no contention, and in a multi-user environment involving
contention for various resources. Also described are the key parameters and
monitoring facilities available in DB2 to manage application and system
performance.

The topics covered are:

� Main components of DB2

� Single-user transaction/query flow

� Multi-user (concurrent) transaction/query flow

� Key performance knobs

� Performance monitoring facilities in DB2

2

© Copyright IBM Corp. 2004. All rights reserved. 13

2.1 Introduction
Critical to performance tuning of a DB2 environment is an understanding of the
main components of DB2, their functionality, and how they interact with each
other. Also important is to understand the flow of an transaction within DB2 and
appreciate the various performance drivers within each component, as well as
key tuning knobs available to impact their performance.

2.2 Main components of DB2
We describe the main components of DB2 from multiple perspectives including a
high level overview of the main DB2 components, a high level overview of DB2
architecture and processes, a detailed view of the DB2 process model, and an
overview of the memory model.

2.2.1 High level overview of main DB2 components
Figure 2-1 provides a high level overview of the main DB2 components.

Figure 2-1 High level overview of main DB2 components

hard
disk

Communication Layer

Data Management Services
(DMS)

AIX Windows Linux Solaris HP-UX

Base Support Utilities
(BSU)

Sort

Run-time Interpreter (RTI)

Relational Data Services
(RDS)

Buffer Pool Manager (BPM)

Data
Protection
Services
 (DPS)

Applications & Administration

Common
Services

Utilities

Operating
System
Services(OSS)

14 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

A brief overview of each of these components, the name of the engine1 (<...>),
and their interaction with each other follows:

� Applications may communicate with the DB2 server over local or remote
connections using a wide variety of protocols and interfaces. Each client
application is linked with the DB2 client library and communicates with the
DB2 server using shared memory and semaphores for local clients, and
communication protocols such as TCP/IP and APPC for remote clients.

� Base Support Utilities (BSU) <sqe> supports tasks associated with starting
DB2 (db2start), creating a database, connecting to DB2 (connect), engine
dispatchable unit (EDU) services, and routing.

� Relational Data Services (RDS) <sqr> supports many operations for
processing data such as joins, grouping, aggregation and math. RDS
includes the DB2 optimizer which performs access path optimization and
generates compiled SQL sections. The RDS also includes catalog services
which manages the metadata describing the tables, indexes and views, as
well as statistics on the data.

� Run-time Interpreter (RTI) <sqri> executes the compiled sections
generated by RDS using one or more RDS operations such as joins,
aggregation and grouping.

� Data Management Services (DMS) < sqd> provides the data structures for
tables, long fields, large objects, and indexes. DMS also performs insert,
update and delete operations on these structures. Some of the components
included in DMS are the Table Manager <sqd>, Index Manager <sqx>, Long
object Manager <sqdl>, and Large object Manager <sqlx>.

� Sort is performed by Sort List Services (SLS) < sqs> .

� Data Protection Services (DPS) <sqp> supports transaction management
and logs every operation that modifies the database for crash recovery. DPS
includes locking and logging services.

� Buffer Pool Manager (BPM) <sqb> provides look-aside caching which
improves performance by caching portions of the database in memory to

1 The executable module.

Note: SQL predicates evaluated by RDS are sometimes referred to as
non-sargable or residual predicates.

Note: SQL predicates evaluated by DMS are called data sargable or index
sargable predicates.

 Chapter 2. DB2 UDB architecture overview 15

avoid I/O, retrieving data before it is requested, and writing out modified data
asynchronously.

� Operating System Services (OSS) <sqo> provides a common interface for
functions such as file reading and writing, shared memory, and latching for
the rest of the database engine.

� Utilities support tasks such as load <squ>, backup <sql>, restore <sql>,
rollforward <sql>, import <sqs> and export <sqs>.

� Common services provides functions such as system monitor <sqm> for
monitoring and tuning, and configuration services <sqf>.

When applications connect to the database using local or remote connections,
an EDU (db2agent) is created by BSU to perform the requested work. The
application’s SQL statement is optimized by RDS, which generates compiled
SQL sections detailing the work to be done. The RTI executes these compiled
sections accessing appropriate tables/indexes via DMS.

DMS accesses data from the buffer pool and/or tables/indexes and returns the
results to the RTI after applying any sargable predicates. RTI applies any
non-sargable predicates and performs any required RDS operations, including
applying sorts if required, before returning the final result back to the application
via the RDS.

From a performance perspective, one particular point may be worth noting: both
the RDS and DMS evaluate SQL predicates which filter the data returned to the
application. However, there is a performance advantage to predicates being
evaluated by the DMS rather than the RDS, since non-qualifying rows can be
rejected earlier.

With a non-sargable predicate (evaluated by the RDS), every row retrieved by
DMS has to be passed to the RDS for possible qualification, which adds to the
path length of the query. By extension, the worst case scenario is when the
application performs the predicate evaluation in user code rather than as a
predicate in the SQL statement.

Sargable and non-sargable predicates are discussed in greater detail in “Limit
the volume of data returned - columns and rows” on page 160.

Attention: This is an oversimplification of the components available in DB2
and the interaction between them. The component functionality described
here is also incomplete and oversimplified and is only meant to give readers a
feel for some of the components and their interrelationships.

16 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

2.2.2 High level overview of DB2 architecture and processes
Figure 2-2 provides a high level overview of DB2 architecture and processes.

Figure 2-2 High level overview of DB2 architecture and processes

As mentioned earlier, each client application is linked with the DB2 client library,
and communicates with the DB2 Server using shared memory for local clients, or
a communication protocol such as TCP/IP for remote clients. Each circle in
Figure 2-2 is an EDU, which are implemented as threads on Windows (all under
a single process db2sysc) and processes on Linux and UNIX.

The key elements in Figure 2-2 are briefly described here; refer to 3.4, “System
environment considerations” on page 198 for a more detailed explanation.

Log
Disks

Idle

Database Level

Idle

Idle Agent Pool
Instance Level

db2loggr
 d2loggw

db2dlock

Deadlock
Detector

Buffer Pool(s)
Log Buffer

Logging
Subsystem

Shared Memory & Semaphores, TCPIP, Named Pipes, NetBIOS, SNA, IPX/SPX
Common Client

DB2 Server

Active Idle

db2agntp

db2agent

Prefetchers
db2pfchr

Page
Cleaners

db2pclnrPara
lle

l, B
ig-

blo
ck

Rea
d R

eq
ue

sts

Parallel, P
age

Write Requests

Listeners

Coordinator
Agents

Subagents

Data Disks

DB2 Client Library

db2tcpcm db2ipccm
Async IO

Prefetch Requests

Victim

Notific
ations

Write

Log Requests

Per-instance
Process/Thread Organization

Per-application

Per-database

Idle

 Chapter 2. DB2 UDB architecture overview 17

DB2 agents
DB2 agents include coordinator agents and subagents, and are the most
common type of DB2 processes that carry out the bulk of SQL processing on
behalf of applications. DB2 assigns a coordinator agent with an application, and
this agent coordinates the communication and processing for this application.

The following database manager and database configuration parameters
determine how many database agents are created and how they are managed.

� MAXAGENTS database manager parameter is the maximum number of
database manager agents that can be working at any one time, including
coordinator agents, subagents, inactive agents, and idle agents.

� MAXCAGENTS database manager parameter is the maximum number of
database manager agents that can be concurrently executing a database
manager transaction.

� MAXAPPLS database configuration parameter is the maximum number of
applications that may simultaneously connect to a single database. It affects
the amount of memory that might be allocated for agent private memory and
application global memory for that database. If set to AUTOMATIC, you can
create any number of databases, and memory usage will grow accordingly.

� MAX_CONNECTIONS database manager parameter is the maximum number of
client connections to a database. When the connection concentrator is
enabled, this parameter works a little differently as discussed in “Connection
concentrator” on page 19.

� MAX_COORDAGENTS database manager parameter is the maximum number of
database manager coordinator agents or application requests that can be
processed at any one time. One coordinating agent is acquired for each local
or remote application that connects to a database or attaches to an instance.

� NUM_POOLAGENTS database manager parameter is the total number of agents,
including active agents and agents in the agent pool, that are kept available in
the system. The default value for this parameter is half the number specified
for MAXAGENTS.

Note: If intra-partition parallelism is disabled (this is the default), then the
coordinator agent performs all the application’s requests. If intra-partition
parallelism is enabled, then DB2 assigns a set of subagents to the application
to work on processing the application requests.

Note: The default setting for MAXAPPLS in DB2 Version 8 is AUTOMATIC.

18 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� NUM_INITAGENTS database manager parameter is the total number of worker
agents that are created when the database manager is started. This speeds
up performance for initial queries. The worker agents all begin as idle agents.

The notion of pooling agents at the database level was added in DB2 UDB
Version 8.1. In reality, the database level idle pool is comprised of one or more
pools for particular groups of applications. Initially, when a system starts up, there
is only one Application Group. As more connections are added, DB2 creates
additional Application Groups and creates an idle pool for each new Application
Group—this is done automatically and transparently by DB2.

There are typically 100-200 applications per Application Group.

Connection concentrator
For internet applications with many simultaneous user connections, the
connection concentrator may improve performance by allowing many more client
connections to be processed efficiently. It also reduces memory use for each
connection, and decreases the number of operating system-level context
switches. This feature is intended for short-running Web applications, and is not
intended for long-running applications such as the production of big reports.

Figure 2-3 on page 20 describes the connection concentrator concept.

Note: Application Groups help spread out access to critical resources such as
shared SQL work space across agents. This can help reduce contention in
very high user population environments.

Note: The connection concentrator feature is new in DB2 Version 8 and is off
by default.

 Chapter 2. DB2 UDB architecture overview 19

Figure 2-3 Connection concentrator concept

Connection concentrator is enabled when MAX_CONNECTIONS is greater than
MAX_COORDAGENTS. In this case, there may be more connections than coordinator
agents to service them.

With connection concentrator disabled, each connected application always has
an agent assigned to it—there is a one-to-one relationship between connections
and agents, as shown in the left half of Figure 2-3 on page 20.

With connection concentrator enabled, there can be a many-to-one relation
between connections and DB2 agents, as shown in the right half of Figure 2-3 on
page 20.

Figure 2-4 on page 21 describes the operation of connection concentrator.

N Client Connections

Page Cleaners
and Prefetchers

Tablespaces

Bufferpool(s)

N Coordinator
Agents

N Client Connections

f(N) Subagents

Page Cleaners
and Prefetchers

Bufferpool(s)

K Coordinator
Agents

f(K) Subagents

Tablespaces

Connection Concentrator
DISABLED

Connection Concentrator
ENABLED

20 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 2-4 Connection concentrator operation

When a client application connects to a database, an application control block is
associated with it.

When the client begins, a transaction the following occurs:

1. One or more dispatchers try to find/create an agent to work on it. If there is no
free idle agent, or if an agent cannot be created because the configuration
limit on the number of coordinator agents has been reached, the request is
queued.

2. When a transaction ends for another application, the coordinating agent
associated with it becomes available and serves the next transaction on the
queue, regardless of connection. Coordinating agents first look to their own
application group for new transaction requests.

logical
agent

Firewall

client

client

client

client

agent

agent pool
application

control
block

logical
sub-
agent

application
control
block

wait queues

Scheduler

listener

application
control
block

coordinator
agent

application
control
block

application
control
block

logical
agent

sub
agent

logical
agent

coordinator
agent

 Chapter 2. DB2 UDB architecture overview 21

A coordinator agent will return to the pool if there is no application waiting to
be served at the time the coordinating agent finishes the transaction. A
coordinating agent will terminate only after it has been idle and waiting in the
pool for an amount of time determined by the logical agent scheduler. A
subagent will return to the agent pool after servicing a request, so that it can
be used for other requests.

For more details on the connection concentrator, refer to DB2 Connect User’s
Guide, SC09-4835, and DB2 UDB Administration Guide: Performance
SC09-4821.

Buffer pools
A buffer pool is an area of memory into which database pages of user table data,
index data, and catalog table data are temporarily moved from disk storage. DB2
agents read and modify data pages in the buffer pool. The buffer pool is a key
influencer of overall database performance, because data can be accessed
much faster from memory than from a disk. If more of the data needed by
applications is present in the buffer pool, then less time would be needed to
access this data, thereby improving performance.

Buffer pools can be defined with varying page sizes including 4 K, 8 K, 16 K and
32 K.

Block-based buffer pools
In DB2 UDB Version 8, prefetching on certain platforms can be improved by
creating block-based buffer pools.

By default, buffer pools are page-based, which means that contiguous pages on
disk are prefetched into non-contiguous pages in memory. Sequential prefetching
can be enhanced if contiguous pages can be read from disk into contiguous
pages within a buffer pool.

Prefetching code recognizes when a block-based buffer pool is available and will
use block I/Os to read multiple pages into the buffer pool in a single I/O, thereby
significantly improving the performance of prefetching.

A block-based buffer pool consists of both a page area and a block area.

Note: There is one queue per Application Group, and each agent is
associated with a particular application group.

Also, to ensure that no single application group dominates system
resources, there is a mechanism that allows agents to migrate from across
application groups over time.

22 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� The page area is required for non-sequential prefetching workloads.
� The block area consists of blocks where each block contains a specified

number of contiguous pages—referred to as the block size.

Prefetchers
Prefetchers are present to retrieve data from disk and move it into the buffer pool
before applications or utilities need the data. For example, applications needing
to scan through large volumes of data would have to wait for data to be moved
from disk into the buffer pool if there were no prefetchers.

With prefetch, DB2 agents of the application send asynchronous read-ahead
requests to a common prefetch queue. As prefetchers become available, they
implement those requests by using big-block or scatter read input operations to
bring the requested pages from disk to the buffer pool.

NUM_IOSERVERS is the database configuration parameter that controls the number
of prefetchers.

Page cleaners
Page cleaners are present to make room in the buffer pool, before agents and
prefetchers read pages from disk storage and move them into the buffer pool. For
example, if an application has updated a large amount of data in a table, many of
the updated data pages in the buffer pool may not yet have been written to disk
storage—such pages are called “dirty” pages. Since prefetchers cannot place
fetched data pages on the dirty pages in the buffer pool, these dirty pages must
first be flushed to disk storage and become “clean” pages, so that prefetchers
can find room to place fetched data pages from disk storage.

Page cleaners are independent of the application agents that read and write to
pages in the buffer pool.

NUM_IOCLEANERS is the database configuration parameter that controls the
number of page cleaners.

Logs
Changes to data pages are logged. Agent processes updating a data record in
the database update the associated page in the buffer pool, and write a log
record into a log buffer.

Note: When a page cleaner flushes a dirty page to disk storage, the page
cleaner removes the dirty flag but leaves the page in the buffer pool. This page
will remain in the buffer pool until a prefetcher or a DB2 agent steals it.

 Chapter 2. DB2 UDB architecture overview 23

To optimize performance, like the updated pages in the buffer pool which are
asynchronously written to the disk by the page cleaners, the log records in the
log buffer are also written asynchronously to disk by the logger. The logger and
the buffer pool manager cooperate and ensure that an updated page is not
written to disk storage before its associated log record is written to the log. This
ensures database recovery to a consistent state from the log in the event of a
crash such as a power failure.

Log buffers are flushed to disk under the following conditions:

� Before the corresponding data pages are written to disk—this is called
write-ahead logging.

� On a COMMIT, when the MINCOMMIT database configuration parameter is set
to 1 (default).

� When MINCOMMIT is set to greater than 1, commit grouping is in effect and
application commit requests are held (wait) until either one second has
elapsed or the number of commit requests equals the value of this parameter.

� When the log buffer is full.

However, the logger also attempts to keep buffers available for new log records to
minimize log waits for buffers (which can have a significant, detrimental impact
on performance). It does this by checking for log buffers ready to be written and
writing them out as soon as the logger has just completed a previous write of log
buffers.

Deadlock detector
A deadlock occurs when one or more applications require access to a resource
that is currently locked by the other application(s).

In order to avoid extended waits in the event of a deadlock, DB2 uses a
background process called the deadlock detector (db2dlock) to identify and
resolve these deadlocks. The deadlock detector becomes active periodically as
determined by the DLCHKTIME database configuration parameter. When the
deadlock detector encounters a deadlock situation, one of the deadlocked
applications will receive an error code, and the current unit of work for that
application will be rolled back automatically by DB2. When the rollback is
complete, the locks held by this chosen application are released, thereby
allowing other applications to continue.

Selecting the proper interval for the deadlock detector ensures good
performance. Too short an interval causes unnecessary overhead, while too long
an interval allows a deadlock to delay processes unnecessarily.

24 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Disks
Data placement, and the number and type of disks, can play a significant role in
the performance and availability of a database application.

The overall objective is to spread the database effectively across as many disks
as possible to try to minimize I/O wait. Operating systems and file systems
support a variety of data placement strategies including mirroring, striping, and
RAID devices, and DBAs need to understand the advantages and disadvantages
of disk capabilities in order to design the most appropriate strategy for their
environments.

2.2.3 Process model
The EDUs described in Figure 2-2 on page 17 are implemented as processes in
UNIX, and threads in a single process (db2sysc) in Windows.

Besides the processes described in Figure 2-2 on page 17, there are a number
of other EDUs in DB2 as well.

It is helpful to know the names and functions of these processes, because they
may help in problem diagnosis. For example, high CPU utilization for a particular
DB2 process may pinpoint the need for a reconfiguration of a particular database
manager or database configuration parameter.

The objective of this section is to provide an understanding of the EDUs involved,
but not manipulate them directly.

Refer to DB2 UDB Version 8 Administration Guide: Performance, SC09-4821, for
more detailed information about DB2 processes.

Figure 2-5 on page 26 shows a simplified view of the DB2 process model.

Note: DB2 UDB Version 8 enhancements to the deadlock Event Monitor now
provide more information to help the DBA determine the cause of the
deadlocks. For example, the deadlock Event Monitor now identifies the
specific statements involved in a deadlock, and pinpoints the specific locks
held by each application involved in the deadlock.

Important: Do not directly terminate DB2 processes in a healthy DB2
environment, since it will cause undesirable effects in DB2. Use the db2stop
command to terminate DB2.

 Chapter 2. DB2 UDB architecture overview 25

Figure 2-5 Simplified view of the DB2 UDB Process Model

The processes shown in Figure 2-5 are briefly described, followed by Table 2-1
on page 28, Table 2-2 on page 28, and Table 2-3 on page 29 describing other
DB2 processes of interest.

Client program
A client program may run remotely or on the same machine as the database
server. Client programs establish contact through a listener process (db2icpcm,
or db2tcpcm, depending upon the communication protocol), and are assigned to
a coordinator agent (db2agent) on a successful connection. They db2fmp
process shown is a user-created, user-defined function or a stored procedure.

Firewall
DB2 architecture provides a firewall so that applications run in a different address
space from DB2. The firewall isolates and protects the database and the
database manager from applications, stored procedures (non-fenced), and user
defined functions (non-fenced) that may crash the database manager.

26 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Listeners
A client program makes initial contact with communication listeners processes
which are started when DB2 is started—these processes are associated with the
DB2 instance. There is a listener for each configured communication protocol,
and an interprocess communication (IPC) listener for local client programs as
follows:

� db2icpcm for local client connections
� db2tcpcm for TCP/IP connections
� db2tcpdm for TCP/IP discovery tool requests

db2agent and db2agntp

An agent is the worker that performs all database operations on behalf of an
application. All connection requests from client applications, whether they are
local or remote, are allocated a corresponding coordinator agent (db2agent).
When the coordinator agent is created, it performs all database requests on
behalf of the application.

When the INTRA_PARALLEL database manager configuration parameter is
enabled, the coordinator agent distributes the database requests to subagents
(db2agntp). The coordinator agent handles all database requests behalf of its
application by coordinating subagents (db2agntp) that perform the actual
requests on the database.

Agent pool
Agent creation and destruction is an expensive operation, and DB2 provides an
agent reuse mechanism by implementing an agent pool to which agents or
subagents are released when an application completes. These agents or
subagents are then available to be reused for requests for coordinator agents on
behalf of a client program, or for subagents on behalf of existing coordinator
agents.

Table 2-1, Table 2-2 on page 28, and Table 2-3 on page 29 describes some of the
more important processes visible during different states of the DB2 environment.

� Table 2-1 describes processes per instance when there are no connections or
active databases.

� Table 2-2 on page 28 describes additional processes per instance when
there are connections present.

� Table 2-3 on page 29 describes processes for each active database, in
addition to the instance and connection processes.

Note: The db2sysc process is the main DB2 system controller or engine;
without this process, the database server cannot function.

 Chapter 2. DB2 UDB architecture overview 27

For a more complete list of DB2 processes and an explanation of their
importance, refer to the article “Everything You Wanted to Know About DB2
Universal Database™ Processes” by Dwaine Snow and Raul F. Chong, which is
available at:

http://www7b.boulder.ibm.com/dmdd/library/techarticle/0304chong/0304chong.html

Table 2-1 DB2 processes per instance - no connections & no active databases

Table 2-2 Additional DB2 processes per instance with connections

Process
name

Brief description

db2cart Determines when a log file can be archived and invokes the user exit
to do the actual archiving. There is one db2cart process per instance,
but it only runs if there is at least one database in the instance which
has USEREXIT enabled.

db2fmtlg Pre-allocates log files in the log path when the database is configured
with LOGRETAIN ON and USEREXIT OFF.

db2gds The DB2 Global Daemon Spawner process that starts all DB2 EDUs
(processes) on UNIX. There is one db2gds per instance or database
partition.

db2disp The DB2 agent dispatcher process, which dispatches client
connections between the application assigned to the client connection
and the available coordinating agents. This process only exists when
connection concentrator is enabled.

db2sysc The main DB2 system controller or engine. Without this process, the
database server cannot function

db2wdog The DB2 watchdog handles abnormal terminations; this only applies to
UNIX.

db2govd The DB2 Governor, which is a reactive governing process. If the DB2
governor is enabled, this process takes snapshots at the interval
specified in the governor configuration file and checks the snapshots
against all configured rules. If a rule is broken, it takes the specified
action.

Process
name

Brief description

db2agent DB2 coordinator agent, which performs all database requests on
behalf of an application.

db2agnsc The parallel recovery agent, which is used during roll forward and
restart recovery to perform the actions from the logs in parallel.

28 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

http://www7b.boulder.ibm.com/dmdd/library/techarticle/0304chong/0304chong.html

Table 2-3 Additional DB2 processes for each active database

db2agnta An idle subagent that was used in the past by a coordinator agent and
is still associated to that coordinating agent process.

db2agntp A subagent that is currently performing work on behalf of the
coordination agent it is associated with. This subagent is enabled
when the INTRA_PARALLEL database manager configuration
parameter is set to YES.

db2ipccm IPC communication manager is the interprocess communication
listener for local client connections.

db2tcpcm TCP communication manager works as a communication listener for
TCP/IP connection requests.

db2tcpdm Communication listener for TCP/IP discovery requests. Discovery
requests are made by the configuration assistant when it searches the
network for remote DB2 servers and their databases.

db2snacm SNA/ APPC communication manager, which works as a
communication listener for SNA/ APPC connection requests.

Process
name

Brief description

db2dlock Local deadlock detector; there is one per database partition. It scans
the lock list and looks for deadlock conditions.

db2estor Used to copy pages between the database buffer pools and extended
storage.

db2event The Event Monitor process. There is one db2event process per active
Event Monitor, per active database. These processes capture the
defined “events” and write them to the output file specified for the
Event Monitor.

db2loggr The database log reader, which reads the database log files during
transaction processing, restart recovery, and roll forward operations.

db2loggw The database log writer, which flushes the log records from the log
buffer to the log files on disk.

db2pclnr The buffer pool page cleaners, which asynchronously write dirty pages
from the buffer pool(s) back to disk.

db2pfchr The buffer pool prefetchers, which read data and index pages from
disk into the database buffer pool(s) before it is read on behalf of
applications.

Process
name

Brief description

 Chapter 2. DB2 UDB architecture overview 29

2.2.4 Memory model
Different applications use memory in different ways. For example, some
applications may use the operating system cache for file handling, while the
database manager uses it own buffer pool for data caching. Therefore, in order to
achieve good performance, it is important to balance overall memory usage on
the system to minimize paging, as described in 5.2.2, “Memory considerations”
on page 335 and 5.3.2, “Memory considerations” on page 383. This requires a
good understanding of how DB2 organizes memory.

Memory allocation is based on database manager and database configuration
parameters. These parameters may specify hard or soft upper limits, lower
bound values, or let DB2 automatically allocate memory resources as required
via the AUTOMATIC setting. Depending upon the area of memory involved, DB2
allocates and deallocates memory at different times; some of the values of these
parameters can be changed online to take immediate effect.

Figure 2-6 on page 31 shows the different portions of memory that the database
manager allocates for various uses.

db2logts This process is used for collecting historical information about which
logs are active when a table space is modified. This information is
recorded in the DB2TSCHG.HIS file in the database directory. It is
used to speed up table space roll forward recovery.

Process
name

Brief description

30 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 2-6 Types of memory used by DB2

There are a few special types of shared memory not shown in Figure 2-6, as
follows:

� Agent/Local Application Shared Memory (database manager configuration
parameter aslheapsz), which is attached by coordinating agents servicing
local applications. It is used for SQL request/response communications.

� UDF/Agent Shared Memory, which is attached by agents running a fenced
UDF or stored procedure. It is used as a communications area.

� Extended buffer pool, where a typically huge region (far in excess of 4 GB) of
shared memory is used as an extended buffer pool. Agents, prefetchers, and
page cleaners are not permanently attached to it. They attach to individual
segments within it as needed.

Figure 2-7 on page 32 provides a more detailed view of the main elements that
comprise each type of memory, and the database manager or database
configuration parameters associated with each type of memory.

Database Manager
Shared Memory

Agent
Private
Memory

Application Shared Memory

Database
Shared Memory

Database
Shared Memory

(1) (numdb)

(1) (maxappls)

(1) (max_connections)

Agent
Private
Memory

Application Group Shared Memory

Application Shared Memory

Application Group Shared Memory

Agent
Private
Memory

Agent
Private
Memory

 Chapter 2. DB2 UDB architecture overview 31

Figure 2-7 The memory used by the database manager

Audit buffer size
(audit_buf_sz)

Monitor heap
(mon_heap_sz)

Database manager shared memory (including FCM)

Log buffer
(logbufsz)

Database
heap

Shared sort heap
(sheapthres_shr)

Backup buffer

Utility heap
(util_heap_sz)

Extended memory
cache

Buffer pools

Lock list (locklist)

Database global memory

(app_ctl_heap_sz) applgroup_mem_sz
group heap_ratio

Application group shared memory and Application Shared memory

Agent private memory

Sort heap
(sortheap)

Statement heap
(stmtheap)

Statistics heap
(stat_heap_sz)

Agent stack
(agent_stack_sz)

Application heap
(applheapsz)

Client I/O block
(rqrioblk) (remote)

Java heap
(java_heap_sz)

Query heap
(query_heap_sz)

Agent/Application shared memory

Application support
layer heap (aslheapsz)

Client I/O block
(rqrioblk) (local)

Catalog cache
(catalogcache_sz)

Package cache
(pckcachesz

32 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

In the following subsections, we describe each type of memory in more detail and
discuss their allocation duration, allocation sizes and limits, overflows into and
out of each heap, and the ability to modify them online for immediate effect.

For recommendations and monitoring guidelines on these heaps, refer to 3.4,
“System environment considerations” on page 198.

Database manager shared memory
Also known as instance shared memory, this memory is used by DB2 to manage
the activities of all connections for all databases associated with this instance.
This includes the following:

� Monitor heap holds Database System Monitor data. The database manager
configuration parameter mon_heap_sz specifies the number of 4 K pages to
hold this data.

� Audit buffer size holds audit data if auditing is enabled. The database
manager configuration parameter audit_buf_sz specifies the number of 4 K
pages to hold this data.

The writing of the audit records may occur synchronously or asynchronously.

– When audit_buf_sz is zero (default) audit records are written
synchronously, the event generating the audit record waits until the record
is written to the disk.

Important: Each type of memory comprises heaps which contribute to the
total memory allocated at the appropriate time; shared memory is allocated in
blocks, while private memory uses heaps. For example, database shared
memory is allocated in full at first connection to the database by an
application or when the database is activated. If database shared memory is
set to AUTOMATIC (which is the default), its size is computed by DB2 taking into
account the values specified for heaps such as dbheap, locklist, and
pckcachesz.

Many of these component heaps are allocated incrementally, up to the limit
specified, and this may lead you to believe that over-configuring these
component heaps may not be a problem. This is not the case, since the
component heaps’ upper limit specifications impact the total memory allocated
and result in allocation failures, as well as paging space consumption.
problems.

In deferred memory allocation schemes (as in UNIX), memory allocation does
not result in paging or swap space backing until the memory is actually used.
Refer to “AIX virtual memory architecture review” on page 335 for further
details on paging in AIX.

 Chapter 2. DB2 UDB architecture overview 33

– When audit_buf_sz is greater than zero, the audit record is written
asynchronously and the event generating the audit record does not wait
until the record is written to disk.

All EDUs in a partition2 are attached to this memory.

The instance_memory database manager configuration specifies the amount of
memory in 4 K pages which should be reserved for instance management; this
includes memory areas that describe the databases on the instance. If this
parameter is set to AUTOMATIC, DB2 calculates the amount of memory needed
for the current configuration.

There are no overflows into or out of this heap.

Database manager shared memory is allocated in full at instance start time
(db2start) and deallocated when it is stopped (db2stop).

The memory visualizer described in “Memory Visualizer” on page 103 gives
information about allocation and utilization at the database manager shared
memory level, but not at the granularity of all the individual heaps comprising the
database manager shared memory.

Table 2-4 summarizes the main features of database manager shared memory
heaps.

Table 2-4 Database manager shared memory heaps

Note: In the asynchronous case, it is possible for audit records to remain in
an unfilled buffer for a long time. To prevent this from happening, the
database manager forces the writing of the audit records on a regular
basis. An authorized user of the audit facility may also flush the audit buffer
by using the command db2audit flush.

2 A partition is a part of a database that consists of its own data, indexes, configuration files, and
transaction logs. A single partition database is a database having only one database partition, and all
the data in the database is stored in that partition. A partitioned database is a database with two or
more database partitions, and tables can be located in one or more database partitions.

Parameter Memory
allocation usage

Default value
4 KB units

Allocated
at

Deallocated
at

Configurable
online?

instance_memory � Full allocation
� Hard limit

Automatic db2start db2stop No

mon_heap_sz � Full allocation
� Hard limit

56 (UNIX)
12 (Windows)

db2start db2stop No

34 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Database shared memory
Also known as database global memory, this memory is used by DB2 to manage
the activities of all connections to a specific database associated with this
instance. This includes the following:

� Buffer pools hold table and index pages when they are read from disk. Their
size is specified in the CREATE/ALTER BUFFERPOOL statement.

� Control blocks for buffer pool descriptors, about one page for every 30
pages in the buffer pool.

� Database heap (database configuration parameter dbheap) holds space for
many items including:

– Temporary memory for utilities

– Event Monitor buffers

– Log buffers as specified by the database configuration parameter
logbufsz

– Temporary overflows from package cache (database configuration
parameter pckcachesz)

– Temporary overflows from catalog cache (database configuration
parameter catalogcache_sz)

� Utility heap specifies the maximum amount of memory (database
configuration parameter util_heap_sz) that can be used for utilities such as
backup, restore and load (including load recovery).

This area of memory may also contain temporary overflows from the package
cache (database configuration parameter pckcachesz) and from the catalog
cache (database configuration parameter catalogcache_sz).

� Lock list specifies the amount of memory (database configuration parameter
locklist) allocated to store all locks held by all applications concurrently
connected to this database. The total amount of locks that can used by all
concurrent applications per each database.

audit_buf_sz � Full allocation
� Hard limit

0 db2start db2stop No

Parameter Memory
allocation usage

Default value
4 KB units

Allocated
at

Deallocated
at

Configurable
online?

Note: The buffer pool descriptors, including page descriptors, have no
overhead in the database heap; they comes out of the database shared
memory and are sized automatically.

 Chapter 2. DB2 UDB architecture overview 35

� Catalog cache specifies the amount of memory (database configuration
parameter catalogcache_sz) used to cache system catalog information.This
is a soft limit and can overflow to other database shared memory heaps such
as dbheap, util_heap_sz and pckcachesz. This can also have overflows
from the package cache (database configuration parameter pckcachesz).

� Package cache specifies the amount of memory (database configuration
parameter pckcachesz) used to cache sections for both static and dynamic
SQL statements. This is a soft limit and can overflow to other heaps such as
dbheap, util_heap_sz, and catalogcache_sz.This can also have overflows
from the catalog cache (database configuration parameter
catalogcache_sz).

� Shared sort memory specifies an upper limit on the amount of database
shared memory (database configuration parameter sheapthres_shr) that can
be used for shared sorts at any one time. This is a hard limit which, when
reached, will cause subsequent shared sorts to fail with an SQL0955C code.

This parameter is only valid when either the database manager configuration
parameter INTRA_PARALLEL is set or connection concentrator is enabled
(database manager configuration parameters MAX_CONNECTIONS is greater
than MAX_COORDAGENTS).

� Extended storage cache3 can be used in systems with very large memory
(typically greater than 4 GB); what this permits is the use of this extra region
of memory as an extended buffer pool. This extended storage acts as an
extended look-aside buffer for the main buffer pools.

The size of this extended memory is defined in terms of the number and size
memory segments as specified by the database configuration parameters
estore_seg_sz and num_estore_segs.

All EDUs working on behalf of a database are attached to this memory.

The database_memory database configuration parameter specifies the minimum
amount of memory in 4 K pages to be reserved for a given database; it does not
include the database manager shared memory or the application group memory.
It can be set to AUTOMATIC, which lets DB2 calculate the memory needed for the
current configuration.

Database shared memory is allocated in full at the first connection to the
database or when the database is activated, and deallocated when the database
is deactivated.

The memory visualizer, described in “Memory Visualizer” on page 103, gives
information about allocation and utilization at the database shared memory level

3 This is not required in 64-bit systems, as all memory is directly accessible by applications in such
cases.

36 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

but not at the granularity of all the individual heaps comprising the database
shared memory.

Table 2-5 summarizes the main features of database global memory heaps.

Table 2-5 Database shared memory heaps

Parameter Memory
allocation usage

Default value
4 KB units

Allocated
at

Deallocated
at

Configurable
online?

database_memory � Full allocation
� Hard limit

Automatic First
connection

or

Activate
database

Deactivate
database

No

SIZE in
CREATE/ALTER
BUFFERPOOL
statement

� Full allocation
� Hard limit

56 (UNIX)
12 (Windows)

First
connection

or

Activate
database

Deactivate
database

Yes

dbheap � Minimum for
DB2 to get
started, then
incremental to
maximum

Automatic First
connection

or

Activate
database

Deactivate
database

Yes

util_heap_sz � Incremental
allocation

� Hard limit

5000 As
required by
the utility

When no
longer need
by the utility

Yes

catalogcache_sz � Incremental
allocation

� Soft limit

-1 First
connection

or

Activate
database

Deactivate
database

Yes

 Chapter 2. DB2 UDB architecture overview 37

(Application Group)/Application Shared Memory
Application Group Shared Memory and Application Shared Memory are used by
all agents (both coordinating and subagents) that work for an application. This
memory is also used to store descriptor information for declared temporary
tables.

This memory is only allocated when either the database manager configuration
parameter INTRA_PARALLEL is set, or connection concentrator is enabled
(database manager configuration parameters MAX_CONNECTIONS is greater than
MAX_COORDAGENTS). The following database configuration parameters specify the
memory utilization of this area.

� appgroup_mem_sz determines the size of the application group shared
memory segment, and it stores information that needs to be shared between
agents working on the same application.

pckcachesz � Incremental
allocation

� Soft limit

-1 First
connection

or

Activate
database

Deactivate
database

Yes

locklist � Full allocation
� Hard limit

100 (UNIX)
50 (Windows)

First
connection

or

Activate
database

Connect
reset (when
there are no
other agents
connected at
the time)
or
Deactivate
database

Yes

sheapthres_shr � Incremental
allocation

� Hard limit

sheapthres When sort
initiated

When sort
completed

No

estore_seg_sz
num_estore_segs

� Full allocation
� Hard limit

16000
and
0 respectively

First
connection

or

Activate
database

Deactivate
database

No

Parameter Memory
allocation usage

Default value
4 KB units

Allocated
at

Deallocated
at

Configurable
online?

38 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� groupheap_ratio specifies the percentage of memory in the application
group shared memory that is devoted to the application group shared heap;
the rest is the application control heap available for use by all the applications
in the application group.

� appl_ctl_heap_sz specifies the size of the shared memory area allocated for
each application in the application group; this area of memory is also called
Application Shared Memory.

All EDUs working on behalf of a particular application are attached to an
Application Shared Memory region for that application. In addition, all EDUs
working on behalf of a particular application are attached to the Application
Group Shared Memory region for the application group that application is a
member of.

There are no overflows into or out of this heap.

This memory is allocated incrementally when an application starts, and is
deallocated when the application completes.

The memory visualizer described in “Memory Visualizer” on page 103 gives
information about allocation and utilization at the application shared memory
level, but not at the granularity of all the individual heaps comprising the
application shared memory.

Table 2-6 on page 40 summarizes the main features of application group shared
memory and application shared memory heaps.

Note: Application groups help spread out access to critical resources such
as shared SQL work spaces across agents. This can help reduce
contention in very high user population environments. There are typically
between 100 and 200 applications per application group. Within an
application group shared memory segment, each application has its own
application control heap, and all applications share one application group
shared heap. When a system starts up there is only one application group,
and as more connections are added, DB2 creates additional application
groups—this is done automatically and transparently by DB2.

 Chapter 2. DB2 UDB architecture overview 39

Table 2-6 App. group shared memory and app. shared memory heaps

Agent private memory
Agent private memory consists of a number of individual heaps, as shown in
Figure 2-7 on page 32. This memory is used manage a number of activities such
as compiling, sorting and servicing of UDFs and stored procedures. Each agent
may allocate and use one or more of the following heaps in agent private
memory:

� Sort heap (database configuration parameter sortheap) defines the
maximum number of private memory pages to be used for each private sort,
or the maximum number of shared memory pages used for each shared sort.

Parameter Memory
allocation
usage

Default value
4 KB units

Allocated
at

Deallocated
at

Configurable
online?

appgroup_mem_sz � Incremental
allocation

� Soft limit

20000
(UNIX with
local clients
other than
HP-UX)

10000
(Windows)

30000 for
database
servers with
local and
remote clients
(HP-UX)

No

groupheap_ratio not
applicable

70 not
applicable

not
applicable

No

appl_ctl_heap_sz � Incremental
allocation

� Soft limit

64 for
database
server with
local clients
128 for
database
server with
local + remote
clients

When
application
starts

When
application
completes

No

40 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� Application heap (database configuration parameter applheapsz) defines
the number of pages for processing SQL statements and stores copies of
executing sections of SQL statements.

� Statement heap (database configuration parameter stmtheap) specifies the
amount of memory to be used as a work space for the SQL compiler during
compilation of an SQL statement.

� Statistics heap (database configuration parameter stat_heap_sz) specifies
the maximum amount of memory used for collecting statistics using the
runstats command.

� Query heap (database manager configuration parameter query_heap_sz)
specifies the maximum amount of memory used for storing information for
each query such as SQLDA, statement text, SQLCA, package name, creator,
section number and consistency token.

� Java™ heap (database manager configuration parameter java_heap_sz)
specifies the maximum amount of memory used by the Java interpreter to
service Java DB2 stored procedures and UDFs.

� Agent stack (database manager configuration parameter agent_stack_sz)
specifies the initial committed amount of memory allocated for each agent in a
Windows environment. It does not apply to UNIX platforms.

� Client I/O block (database manager configuration parameter rqrioblk)
specifies the size of the communication buffer between remote applications
and database agents. When a database client requests a connection to a
remote database, this communication buffer is allocated on the client.

On the database server, a communication buffer of 32767 bytes is initially
allocated, until a connection is established and the server can determine the
value of rqrioblk at the client; once the server knows this value, it reallocates
its communication buffer to the minimum of the client and server settings for
this parameter. In addition to this communication buffer, rqrioblk is also used
to determine the I/O block size at the database client when a blocking cursor
is opened.

Each EDU has its own private memory.

Different components of agent private memory are allocated on a demand basis,
and deallocated as soon as their task is complete. Agent private memory is
allocated for an agent when the agent is assigned as the result of a connect
request, and deallocated when the agent terminates.

Note: If the sort is a private sort, then this parameter affects agent private
memory. If the sort is a shared sort, then this parameter affects database
shared memory.

 Chapter 2. DB2 UDB architecture overview 41

There are no overflows into or out of this heap.

The memory visualizer described in “Memory Visualizer” on page 103 gives
information about allocation and utilization at the agent private memory level, but
not at the granularity of all the individual heaps comprising the agent private
memory.

Table 2-7 summarizes the main features of agent private memory heaps.

Table 2-7 Agent private memory heaps

Parameter Memory
allocation
usage

Default
value
4 KB units

Allocated
at

Deallocated
at

Configurable
online?

sortheap Private sorts

� Incremental
allocation

� Soft limit

Shared sorts

� Incremental
allocation

� Hard limit

256 When sort is
needed

When sort
completes

No

applheapsz � Incremental
allocation

� Soft limit

256 When the agent
is initialized to
do work for an
application

When the
agent
completes the
work to be
done for an
application

No

stmtheap � Full
allocation

� Hard limit

2048 During
precompiling or
binding of an
SQL statement

When
precompiling
or binding of
an SQL
statement
completes

No

stat_heap_sz � Full
allocation

� Hard limit

4384 When runstats
utility is started

When
runstats utility
completes

No

query_heap_sz � Full
allocation

� Hard limit

1000 When an
application
connects to a
database

When an
application
disconnects
from the
database, or
detaches from
an instance

No

42 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Agent/Application Shared Memory
This memory (database manager configuration parameter aslheapsz) is attached
by coordinating agents servicing local applications, and is used for SQL
request/response communications. It represents a communication buffer
between the local applications and its associated agent, and is allocated as
shared memory by each database agent that is started.

java_heap_sz � Full
allocation

� Hard limit

512 When a Java
stored
procedure or
UDF starts

When the
db2fmp
process
(fenced) or the
db2agent
process
(trusted)
terminates

No

agent_stack_sz � Initial
allocation
size

� Upper limit
depends
on default
reserve
stack size

16 When the agent
is initialized to
do work for an
application

When the
agent
completes the
work to be
done for an
application

No

rqrioblk
(remote
applications)

� Full
allocation

� Hard limit

32767
bytes

� When a
remote
client
application
issues a
connection
request for
a server
database

� When a
blocking
cursor is
opened,
additional
blocks are
opened at
the client

� When the
remote
client
application
disconnect
s from the
server
database

� When the
blocking
cursor is
closed.

No

Parameter Memory
allocation
usage

Default
value
4 KB units

Allocated
at

Deallocated
at

Configurable
online?

 Chapter 2. DB2 UDB architecture overview 43

In addition to this communication buffer, it is also used for two other purposes as
follows:

� To determine the I/O block size when a blocking cursor is opened.

� To determine the communication size between agents and db2fmp
processes, which may be a user-defined function or a fenced stored
procedure.

aslheapsz determines the initial size of the query heap for both local and remote
clients, with the maximum size being defined by the query_heap_sz database
manager configuration parameter.

Also included in this memory is the local applications’ equivalent of rqrioblk as
discussed in “Agent private memory” on page 40.

This memory is allocated when the database manager agent process is started
for the local application, and deallocated when the database manager process is
terminated.

The memory visualizer described in “Memory Visualizer” on page 103 gives
information about allocation and utilization at the agent/application shared
memory level, but not at the granularity of all the individual heaps comprising the
agent/application shared memory.

Table 2-8 summarizes the main features of agent private memory heaps.

Table 2-8 Agent/Application Shared Memory heaps

Parameter Memory
allocation
usage

Default
value
4 KB
units

Allocated
at

Deallocated
at

Configurable
online?

aslheapsz � Initial
allocation

� Upper limit
determined
by the
query heap
size

15 When a
database
manager agent
process is
started for a
local application

When the
database
manager agent
process is
terminated

No

44 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

2.3 Single user transaction/query flow
In this section, we describe the flow of a single user transaction involving a
connect to a database, one or more SQL statements, followed by a commit and
disconnect from the database. We also identify some of the key database
manager and database configuration parameters that may impact the
performance of the transaction.

Figure 2-8 on page 46 and Figure 2-9 on page 49 describe some of the main
components involved in the execution of a transaction when connection
concentrator is enabled and disabled respectively. Figure 2-9 on page 50
provides a high level comparison of the transaction flow with and without
connection concentrator enabled.

For best practices related to the various database manager and database
configuration parameters mentioned in this section, refer to 3.4, “System
environment considerations” on page 198.

rqrioblk
(local applications)

� Full
allocation

� Hard limit

32767
bytes

� When a
local client
application
issues a
connection
request for
a server
database

� When a
blocking
cursor is
opened,
additional
blocks are
opened at
the client

� When the
local client
application
disconnects
from the
server
database

� When the
blocking
cursor is
closed.

No

Parameter Memory
allocation
usage

Default
value
4 KB
units

Allocated
at

Deallocated
at

Configurable
online?

Important: This is a simplified explanation of the flow of a transaction and its
interactions with the various components of DB2. There are also many other
DB2 and non-DB2 factors and parameters that affect the performance of a
transaction that are not covered here.

 Chapter 2. DB2 UDB architecture overview 45

2.3.1 Transaction flow with connection concentrator enabled
Every transaction or query begins with a connect to the database, followed by
one or more SQL statements, and ends with a commit and disconnect from the
database.

Figure 2-8 Single user transaction/query flow with CC enabled

The following series of interactions occur in DB2 as described in Figure 2-8
during the execution of a typical transaction with connection concentrator
enabled:

� When the application issues a connect to a database, the appropriate DB2
listener task (db2tcpcm, or db2ipccm) creates a logical agent that is a
representation of a client connection to the database, if the creation does not
exceed the limit specified by the max_connections database manager
configuration parameter.

MAXAPPLS
MAXAGENTS
MAX_COORDGENTS
MAX_POOLAGENTS

Listener

 SA

appl heap
sort heap
stmt heap
stat heap

agent stack
query heap

CA

db2tcpcm
db2ipccm

Obtain
token

from DBM

MAX_CONNECTIONS

LA

Dispatcher

Agent Pool

Applheapsz
Appgroup_mem_sz
Groupheap_ratio
Appl_ctl_heap_sz
Sortheap
Stmtheap
Stat_heap_sz
Agent_stack_sz
Query_heap_sz
dbheap

Aguire memory +
token

Client

catalog cache

package cache
catalogcache_sz
pkcachesz

DMS

RDS

Table/Index Manager

locklist
MAXLOCKS

MINCOMMIT
logbufsz

DPS Acquire
logging

BPM Sync/Async I/O Manager
Sort

over flow

Temp Index Data Log

Operation System Services (OSS)

Buffer Pool

Prefetcher
queue

Sort

sortheap
sheapthres_shr
sheapthres

CHNGPGS_THRESH
NUM_IOSERVERS
NUM_IOCLEANERS
SOFTMAX

DPS Acquire
lock

MAXCAGENTS

LEGEND
Logical Agent (Application)
Coordinator Agent
Subagent
Relational Data Services
Data Management Services
Data Protection Services
Buffer Pool Manager

LA
CA
SA
RDS
DMS
DPS
BPM

locklist

logbuffer

46 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

– If the max_connections limit would be exceeded by the creation of this
logical agent, then an error code SQL1226N is returned to the application.

� When the first SQL call is issued by the application, the following occurs:

a. The dispatcher (db2disp) associates a coordinator agent (if one is
available) with the logical agent created and its application group;
applications always belong to a particular “application group”, which is the
logical representation of a set of shared resources (shared, that is,
between applications within that application group).

The coordinator agent process will then serve requests on behalf of the
application for the duration of a single transaction. The coordinator agent
may be created if one from the agent pool cannot be used, assuming that
the creation of this coordinator agent does not exceed either the limits
specified by the maxagents, max_coordagents, maxappls and maxcagents
database manager and database configuration parameters.

The coordinator agent checks the maxcagents database configuration
parameter limit to determine whether or not a token can be acquired for
the application to proceed.

• If any of the limits (except max_coordagents and maxcagents) would
be exceeded, then error code SQL1040N, or SQL1223N or SQL1226N
is returned to the application.

• If max_coordagents limit would be exceeded, then the request is
queued until a coordinator agent becomes available.

• If maxcagents limit would be exceeded, then the coordinator agent will
sleep until a token becomes available, at which point the requested
work will be processed.

b. If the SQL statement is dynamic, and a reusable package is not found in
the package cache (pckcachesz), then the SQL statement is compiled to
generate an optimal access plan — the catalog cache (catalogcache_sz)
and the statement heap (stmtheap) size affect the performance of this
compilation process.

The RDS component is involved in executing this function.

c. The compiled statement is then executed.

• Data and index access is impacted by the hit rate in the buffer pool, and
this is impacted by the nature of the application workload, size of buffer
pool (SIZE), effectiveness of prefetching (num_ioservers), and

Note: Subagents are created if appropriate, which then execute
requests on behalf of the coordinator agent.

 Chapter 2. DB2 UDB architecture overview 47

availability of non-dirty pages (num_ioservers, chngpgs_thresh,
softmax).

The DMS, BPM, DPS, sort, and OSS components are involved in
executing this function.

• Locks are acquired as needed and performance may be impacted by
locklist, and maxlocks.

The DPS component is involved in executing this function.

• Sorts are performed as required, the performance of which is impacted
by the sort heap (sortheap), sort heap threshold (sheapthres), and sort
heap threshold for shared sorts (sheapthres_shr).

The RDS, BPM and OSS are involved in executing this function.

• Other heaps that impact performance are applheapsz, dbheap,
query_heap_sz and agent_stack_sz.

• Log records are written as required, the performance of which may be
impacted by the size of the log buffer as controlled by logbufsz.

The DPS component is involved in executing this function.

� Subsequent SQL calls have the same performance considerations as the first
SQL call, except for the need to associate a coordinator agent.

� The commit call signals the end of the transaction and causes the following to
occur:

a. Force the log records to be written to disk (performance may be impacted
by the mincommit parameter).

The DPS component is involved in executing this function.

b. Disassociate the coordinator agent from the logical agent, and return it to
the agent pool, unless there is another logical agent in the queue waiting
to be serviced. When pooled, the coordinator agent remains associated
with the application group in question to improve performance of
subsequent transactions.

� The disconnect from the database call terminates the logical agent.

2.3.2 Transaction flow with connection concentrator disabled
Figure 2-9 on page 49 describes some of the main components involved in the
execution of a transaction when connection concentrator is disabled.

48 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 2-9 Single user transaction/query flow without connection concentrator

The series of interactions described in Figure 2-9 during the execution of a
typical transaction with connection concentrator disabled differ from Figure 2-8
on page 46, as follows:

� There is no logical agent with connection concentrator disabled, and the
coordinator agent is associated (found in the agent pool or created) during the
connect to the database itself.

� There is no queuing if the max_coordagents limit is exceeded when an agent
attempts to connect to a database; instead, error code SQL1226N is returned
to the application.

� The coordinator agent is not disassociated at the end of the transaction, but at
the time the agent disconnects from the database.

MAX_CONNECTIONS
MAXAPPLS
MAXAGENTS
MAX_COORDGENTS
MAX_POOLAGENTS

Listener

 SA

appl heap
sort heap
stmt heap
stat heap

agent stack
query heap

CA

db2tcpcm
db2ipccm

Obtain
token

from DBM

Agent Pool

Applheapsz
Sortheap
Stmtheap
Stat_heap_sz
Agent_stack_sz
Query_heap_sz
dbheap

Aguire memory +
token

Client

catalog cache

package cache
catalogcache_sz
pkcachesz

DMS

RDS

Table/Index Manager

locklist
MAXLOCKS

MINCOMMIT
logbufsz

DPS Acquire
logging

BPM Sync/Async I/O Manager
Sort

over flow

Temp Index Data Log

Operation System Services (OSS)

Buffer Pool

Prefetcher
queue

Sort

sortheap
sheapthres_shr
sheapthres

CHNGPGS_THRESH
NUM_IOSERVERS
NUM_IOCLEANERS
SOFTMAX

DPS Acquire
lock

MAXCAGENTS

LEGEND
Coordinator Agent
Subagent
Relational Data Services
Data Management Services
Data Protection Services
Buffer Pool Manager

CA
SA
RDS
DMS
DPS
BPM

logbuffer

locklist

 Chapter 2. DB2 UDB architecture overview 49

Table 2-9 Tuning knobs at each application call

Application calls Connection concentrator
enabled

Connection concentrator
disabled

Connect to database 1. Listener checks request
against
MAX_CONNECTIONS
limit — error code
(SQL1226N) returned to
application if limit
exceeded

2. Creates logical agent

1. Listener checks request
against
MAX_CONNECTIONS,
MAXAGENTS,
MAX_COORDAGENTS
MAXAPPLS limit — error
code (SQL1040N or
SQL1223N or
SQL1224N or
SQL1226N) returned to
application if limit
exceeded

2. Listener finds/creates
coordinator agent
(NUM_POOLAGENTS)

50 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

First SQL call 1. Dispatcher checks
against MAXAGENTS,
MAXAPPLS limits —
error code (SQL1040N,
or SQL1223N or
SQL1224N) returned to
application if exceeded

2. Dispatcher checks
MAX_COORDAGENTS,
limit — queues request if
limit exceeded

3. Dispatcher finds/creates
coordinator agent and
associates logical agent
with it
(NUM_POOLAGENTS)

4. Coordinator agent
requests a token
(MAXCAGENTS); will
sleep until one becomes
available

5. Begin transaction

6. Compiler compiles
dynamic SQL statement
(CATALOGCACHE_SZ,
STMTHEAP,
PCKCACHESZ)

7. Executes SQL statement
(AGENT_STACK_SZ,
APPLHEAPSZ,
LOCKLIST, MAXLOCKS,
LOGBUFSZ,
QUERY_HEAP_SZ,
SORTHEAP,
SHEAPTHRES,
SHEAPTHRES_SHR,
SIZE,
CHNGPGS_THRESH,
NUM_IOSERVERS,
NUM_IOCLEANERS,
APPGROUP_MEM_SZ,
GROUPHEAP_RATIO,
APPL_CTL_HEAP_SZ)

1. Coordinator agent
requests a token
(MAXCAGENTS); will
sleep until one becomes
available

2. Begin transaction

3. Compiler compiles
dynamic SQL statement
(CATALOGCACHE_SZ,
STMTHEAP,
PCKCACHESZ)

4. Executes SQL statement
(AGENT_STACK_SZ,
APPLHEAPSZ,
LOCKLIST, MAXLOCKS,
LOGBUFSZ,
QUERY_HEAP_SZ,
SORTHEAP,
SHEAPTHRES,
SHEAPTHRES_SHR,
SIZE,
CHNGPGS_THRESH,
NUM_IOSERVERS,
NUM_IOCLEANERS)

Application calls Connection concentrator
enabled

Connection concentrator
disabled

 Chapter 2. DB2 UDB architecture overview 51

2.4 Multi-user (concurrent) transaction/query flow
The multi-user environment tends to expose inadequately defined parameter
limits such as maximum number of coordinating agents, and constrained
resources such as memory heaps.

Subsequent SQL calls 1. Compiler compiles
dynamic SQL statement
(CATALOGCACHE_SZ,
STMTHEAP,
PCKCACHESZ)

2. Executes SQL statement
(AGENT_STACK_SZ,
APPLHEAPSZ,
LOCKLIST, MAXLOCKS,
LOGBUFSZ,
QUERY_HEAP_SZ,
SORTHEAP,
SHEAPTHRES,
SHEAPTHRES_SHR,
SIZE,
CHNGPGS_THRESH,
NUM_IOSERVERS,
NUM_IOCLEANERS,
APPGROUP_MEM_SZ,
GROUPHEAP_RATIO,
APPL_CTL_HEAP_SZ)

1. Compiler compiles
dynamic SQL statement
(CATALOGCACHE_SZ,
STMTHEAP,
PCKCACHESZ)

2. Executes SQL statement
(AGENT_STACK_SZ,
APPLHEAPSZ,
LOCKLIST, MAXLOCKS,
LOGBUFSZ,
QUERY_HEAP_SZ,
SORTHEAP,
SHEAPTHRES,
SHEAPTHRES_SHR,
SIZE,
CHNGPGS_THRESH,
NUM_IOSERVERS,
NUM_IOCLEANERS)

Commit 1. Force log (LOGBUFSZ,
MINCOMMIT)

2. Disassociate coordinator
agent from logical agent
(NUM_POOLAGENTS)

– coordinator agent
can service any other
logical agent in the
queue, or moved to
the agent pool

Force log (LOGBUFSZ,
MINCOMMIT)

Disconnect from
database

Terminate logical agent Disassociate coordinator
agent from client application
and return to the agent pool
(NUM_POOLAGENTS)

Application calls Connection concentrator
enabled

Connection concentrator
disabled

52 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The tripping of limits or contention for memory heaps results in performance
degradation. Referring to Figure 2-8 on page 46, the following considerations
apply in very high user population environments:

� Inadequate limits on max_connections, maxagents, max_coordagents,
maxappls, and maxcagents can result in application connection failures, or
unacceptable waits for service from the coordinating agent.

� Insufficient application group shared memory appgroup_mem_sz,
groupheap_ratio, and appl_ctl_heap_sz can result in inefficient use of
shared memory and performance degradation.

� Insufficient pckcachesz can result in unnecessary compiles of dynamic SQL
statements, as well as overflows into dbheap, and util_heap_sz, which can
negatively impact processes that suffer from shortages of those heaps.

� Insufficient catalogcache_sz results in synchronous I/Os to system catalog
tables, which negatively impacts the performance of dynamic SQL compiles.

� Insufficient locklist results in lock escalations that can result in significant
performance degradation due to lock waits, timeouts, and deadlocks.

� Insufficient buffer pool size (SIZE) can result in synchronous I/Os, which
impact application performance.

� Insufficient number of num_ioservers can result in prefetch requests being
queued and result in synchronous I/Os; too many can also degrade
performance.

� Low limits on sortheap, sheapthres and sheapthres_shr may result in
insufficient sort heap allocation and consequent sort overflows and
synchronous I/Os, which are contributors to poor performance.

� Inadequate specifications of chngpgs_thresh, softmax and num_iocleaners
can result in unduly large numbers of dirty pages in the buffer pool, thereby
affecting the efficiency of prefetching as well as causing expensive
synchronous reads.

� Insufficient log buffer size (logbufsz) can result in an application waiting for
log buffers, which impacts transaction performance. A high value for
mincommit in a lightly loaded system with small/short l transactions can result
in response time overhead of up to one second, and consequent reduction in
transaction throughput.

In summary, insufficient memory heaps and low limits on key thresholds tend to
manifest significant performance problems in heavy, multi-user workload
environments and require constant monitoring and tuning to ensure business
performance objectives are met.

 Chapter 2. DB2 UDB architecture overview 53

2.5 Key performance knobs
Every organization’s configuration, workload, and business application priorities
tend to be unique, which correspondingly requires a custom approach to
configuring, monitoring, and tuning their DB2 environment.

DB2 provides a number of tuning knobs for customizing an organization’s DB2
environment in order to deliver good performance. This subsection lists and
briefly describes key performance knobs available to the DBA to manage their
environment. These performance knobs are:

� Database manager configuration parameters
� Database configuration parameters
� DB2 registry and environment variables

DB2 UDB version 8 provides a Configuration Advisor Wizard and an
autoconfigure command described in “Configuration Advisor and
AUTOCONFIGURE” on page 54 to help the DBA define optimal database
manager and database configuration parameters for their environment.

The Configuration Advisor sets database manager configuration parameters in
addition to database configuration parameters, and should only be run against a
database that is the only database associated with that DB2 instance. The
Configuration Advisor only recommends values for a little over 30 of hundreds of
database manager and database configuration parameters and DB2 registry and
environment variables available for configuring by the DBA.

For detailed information on database manager and database configuration
parameters, and DB2 registry and environment variables, refer to DB2 UDB
Administration Guide: Performance, SC09-4821.

2.5.1 Configuration Advisor and AUTOCONFIGURE
The Configuration Advisor Wizard can be invoked from the Control Center using
Tools -> Wizards -> Configuration Advisor. The wizard then presents a series
of screens with questions regarding your environment and application workload,

Note: Recommendations and monitoring guidelines for these parameters are
discussed in Chapter 3, “Application design and system performance
considerations” on page 107.

Important: We strongly recommend the use of the Configuration Advisor or
AUTOCONFIGURE command to tune your system.

54 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

and generates the screen of suggested parameter settings shown in shown in
Figure 2-10 on page 56.

Example 2-1 on page 57 shows the script generated for the sample database by
the Configuration Advisor using most (but not all) of the default settings.

Note: Configuration Advisor actually executes on the target DB2 system, and
performs auto discovery of the target DB2 environment’s available resources
before coming up with its recommendations for the various configuration
parameters.

 Chapter 2. DB2 UDB architecture overview 55

Figure 2-10 Configuration Advisor wizard

56 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Example 2-1 Database manager and database configuration parameters set

UPDATE DATABASE CONFIGURATION FOR SAMPLE USING APP_CTL_HEAP_SZ 128;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING BUFFPAGE 118915;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING CATALOGCACHE_SZ 343;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING CHNGPGS_THRESH 60;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING DBHEAP 600;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING LOCKLIST 50;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING LOGBUFSZ 65;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING LOGFILSIZ 1024;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING LOGPRIMARY 3;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING LOGSECOND 0;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING MAXAPPLS 40;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING MAXLOCKS 60;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING MINCOMMIT 1;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING NUM_IOCLEANERS 1;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING NUM_IOSERVERS 4;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING PCKCACHESZ 859;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING SOFTMAX 120;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING SORTHEAP 192;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING STMTHEAP 2048;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING DFT_DEGREE 1;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING DFT_PREFETCH_SZ 32;
UPDATE DATABASE CONFIGURATION FOR SAMPLE USING UTIL_HEAP_SZ 39638;
UPDATE DATABASE MANAGER CONFIGURATION USING SHEAPTHRES 1140;
UPDATE DATABASE MANAGER CONFIGURATION USING INTRA_PARALLEL OFF;
UPDATE DATABASE MANAGER CONFIGURATION USING MAX_QUERYDEGREE 1;
UPDATE DATABASE MANAGER CONFIGURATION USING MAXAGENTS 400;
UPDATE DATABASE MANAGER CONFIGURATION USING NUM_POOLAGENTS 400;
UPDATE DATABASE MANAGER CONFIGURATION USING NUM_INITAGENTS 0;
UPDATE DATABASE MANAGER CONFIGURATION USING FCM_NUM_BUFFERS 4096;
UPDATE DATABASE MANAGER CONFIGURATION USING FCM_NUM_RQB 0;
CONNECT TO SAMPLE;
ALTER BUFFERPOOL IBMDEFAULTBP SIZE 118915;
COMMIT;
CONNECT
RESET;

The autoconfigure command delivers the same results as the Configuration
Advisor wizard, by accepting the same input via options listed and described in
Table 2-10 on page 58. autoconfigure calculates and displays the optimum
values for the buffer pool size, database configuration, and database manager
configuration parameters, with the option of applying these recommended values
immediately.

The AUTOCONFIGURE option may also be used with the CREATE DATABASE
command to configure databases as soon as they are created.

For more details on the autoconfigure command, refer to DB2 UDB Command
Reference, SC09-4828.

Note: These recommendations should be validated through actual
measurements in regression test environments before committing the
changes in the production environment.

 Chapter 2. DB2 UDB architecture overview 57

Table 2-10 AUTOCONFIGURE command options

2.5.2 Database Manager (DBM) configuration parameters
A Database Manager Configuration file (DBM) is created at the time a DB2
instance is created. The parameters it contains affect system resources at the
instance level, independent of any one database that is part of the instance.
Some of the configuration parameters can be set to AUTOMATIC, which lets DB2
automatically adjust these parameter values to reflect current resource
requirements.

There is one DBM configuration file for each client installation, which contains
information about the client enabler for a specific workstation. A subset of the
parameters available for a server are applicable to the client.

Option name Valid value Default
value

Explanation

mem_percent 1 - 100 80 The percentage of real memory
to dedicate to this database.

workload_type simple, mixed,
complex

mixed Simple workloads tend to be I/O
intensive and mostly
transactions, whereas complex
workloads tend to be CPU
intensive and mostly queries.

num_stmts 1 - 1000000 10 Number of statements per unit
of work.

tpm 1 - 50000 60 Number of transactions per
minute.

admin_priority performance,
recovery, both

both Optimize for better performance
(more transactions per minute)
or better recovery time.

is_populated yes, no yes Is the database populated with
data.

num_local_apps 0 - 5000 0 Number of connected local
applications

num_remote_apps 0 - 5000 10 Number of connected remote
applications

isolation RR, RS, CS,
UR

RR Isolation level of applications
connecting to this database

bp_resizeable yes, no yes Are buffer pools resizeable?

58 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

In UNIX environments, the DBM file is stored in a file named db2systm in the
sqllib subdirectory for the instance of the database manager. In Windows, the
default location of this file is the instance subdirectory of the sqllib directory. If the
DB2INSTPROF variable is set, the file is in the instance subdirectory of the directory
specified by the DB2INSTPROF variable.

For some database manager configuration parameters, the database manager
must be stopped (db2stop) and then restarted (db2start) in order for new
parameter values to take effect; other parameters can be configured online.

Table 2-11 lists key database manager configuration parameters that may have a
significant impact on the performance of your specific environment.

Table 2-11 Database Manager configuration parameters

Attention: Do not modify the db2system file using a method other than those
provided by DB2; you may make the database unusable.

Parameter Description

agentpri This parameter controls the priority given to all agents and other
database manager instance processes and threads by the
operating system scheduler. This priority determines how CPU
time is given to the DB2 processes, agents and threads relative
to other processes and threads running on the machine.
The default is -1, which means that no special no action is taken
and the database manager is scheduled in the normal way that
the operating system schedules all processes and threads.

aslheapsz The communication buffer between the local application and its
associated agent. It is also used to determine the I/O block size
when a blocking cursor is opened, and determine the initial size
of the query heap. If a request does not fit into the buffer, then it
is split into multiple send and receive pairs.

audit_buf_sz This parameter specifies the size of the buffer used when
auditing the database. By giving a value greater than zero, the
audit facility writes records to the disk asynchronously. This
improves DB2 performance over leaving the parameter to the
default (0), which writes records synchronously.

 Chapter 2. DB2 UDB architecture overview 59

2.5.3 Database (DB) configuration parameters
The Database (DB) configuration file is created with default parameter values
when the database is created. There is one configuration file for each database,
and its parameters specify, among other things, the amount of resources to be
allocated to the database.

Parameters for an individual database are stored in a file named SQLDBCON,
which is stored along with other control files for the database in the SQLnnnnn
directory, where nnnnn is the number assigned when the database was created.

Some of the database configuration parameters are informational in nature and
can only be read, while others are configurable and can be changed. Many of the
database configuration parameters are configurable online, which means that
changes can take effect immediately without deactivating the database. A few of
the parameter changes take effect only after the database has been deactivated,
which requires all applications to first be disconnected from the database.

num_poolagents The number of idle agents in the pool, which can be used as
parallel subagents or as coordinator agents. If more agents are
created than is indicated by this value, they will be terminated
when they finish executing their current request, rather than be
returned to the pool.
When connection concentrator is disabled (max_connections is
equal to max_coordagents), this parameter determines the
maximum size of the idle agent pool.
When connection concentrator is enabled, (max_connections is
greater than max_coordagents), this parameter is used as a
guideline for how large the agent pool will be when the system
work load is low; a database agent will always be returned to the
agent pool no matter what the value of this parameter is. Based
on the system load and the time agents remain idle in the pool,
the logical agent scheduler may terminate as many of them as
necessary to reduce the size of the pool to this parameter value.
If this value is set to 0, agents will be created as needed and may
be terminated when they finish executing the current request.

sheapthres The parameter is an instance-level soft limit for private sorts, and
a hard limit for shared sorts. When this limit is reached for shared
sorts, no further shared sort memory requests will be allowed
until the total shared sort memory consumption falls below the
limit specified here.

Parameter Description

60 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Table 2-12 lists key database configuration parameters that may have a
significant impact on the performance of your specific environment.

Table 2-12 Database configuration parameters

Attention: Do not modify the SQLDBCON file using a method other than
those provided by DB2; you may make the database unusable.

Parameter Description

java_heap_sz This parameter determines the maximum size of the heap that is
used by the Java interpreter to service the Java Stored
procedures and UDFs. The default size is 512 by 4 K pages.

avg_appls This parameter is used by the SQL optimizer to help estimate
how much buffer pool will be available at run time for the access
plan chosen. The default value is 1.

catalogcache_sz This parameter specifies the size of the cache used to catalog
information such as system tables. This caching can improve the
performance of binding packages and compiling SQL
statements, operations that involve checking database
privileges, and operations that involve checking execute
privileges. The default value is -1, which sets the
catalogcache_sz to 8 x 4 K pages.

chngpgs_thresh This parameter specifies the percentage of changed pages in the
buffer pool at which the asynchronous page cleaners will be
started. The default value is 60.
Asynchronous page cleaners write changed pages from the
buffer pool(s) to disk before the space in the buffer pool is
required by database agents.

locklist This parameter indicates the amount of storage that is allocated
to the lock list, which contains the locks held by all applications
concurrently connected to the database. When this limit is
exceeded, lock escalation occurs which may have a significant
negative performance impact as a result of lock waits, timeouts,
and deadlocks.

logbufsz This parameter specifies the amount of memory to use as a
buffer for log records before writing these records to disk. By
increasing the value of this parameter, the log records may be
written to the disk less frequently.

 Chapter 2. DB2 UDB architecture overview 61

maxappls This parameter specifies the maximum number of concurrent
applications that can be connected (both local and remote) to a
database. Since each application that attaches to a database
causes some private memory to be allocated, allowing a larger
number of concurrent applications will potentially use more
memory. The default is AUTOMATIC.

num_iocleaners This parameter specifies the number of asynchronous page
cleaners for a database. These page cleaners write changed
pages from the buffer pool to disk before the space in the buffer
pool is required by a database agent. As a result, database
agents do not have to wait for changed pages to be written out to
the disk. The default value is 1.

num_ioservers This parameter specifies the number of asynchronous
prefetchers for a database.These prefetchers perform prefetch
and other asynchronous I/O, such as backup and restore. The
default value is 3.

pckcachesz This parameter specifies the size of the cache used to keep the
sections for static and dynamic SQL statements in database
shared memory. Caching the packages will reduce access to the
system catalogs for reloading a package, or eliminate the need
for compilation for dynamic SQL statements. The default value is
-1.

seqdetect This parameter may be used to control whether the database
manager should perform sequential detection, which is the
process of activating I/O prefetching by monitoring I/O. The
default value is YES.

sheapthres_shr This parameter is a hard limit on the total amount of database
shared memory that can be used to sort at any one time. When
the limit is reached, subsequent sorts will fail (SQL0995C).
The value of 0 means that sheapthres_shr is equal to the
sheapthres DBM configuration parameter.
This parameter applies only when INTRA_PARALLEL is
enabled, or if the connection concentrator is enabled.

sortheap This parameter specifies the maximum number of agent private
memory pages to be used for private sorts, or the maximum
number of shared memory pages to be used for shared sorts.
Each sort has a separate sort heap that is allocated as needed
by the database manager. The sort heap is where the data is
sorted. The default is 256 x 4 K pages.

Parameter Description

62 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

2.5.4 DB2 registry and environment variables
In addition to the database manager and database configuration parameters,
some DB2 registry and environment variables may also have a significant impact
on performance. Registry and environment variables can be updated using the
DB2 Configuration Assistant or the db2set command. The registry and
environment variables are categorized as:

� General registry variables
� System environment variables
� Communication variables
� MPP configuration variables
� SQL compiler variables
� Performance variables
� Data link variables
� Miscellaneous variables

The command db2set -lr lists all available registry variables, some of which
may or may not be useful or supported in your environment.

DB2 configures its operating parameters by checking for registry and
environment variables and resolving them in the following order:

� Environment variables are modified via the set command on Windows, or the
export command on UNIX.

� Registry values are set with the db2set command in the instance level profile.
This profile contains instance level settings and overrides values set at the
global level.

� Registry values are set with the db2set command at the global level. This
profile contains machine-wide variable settings. Any variable not defined in
the node or instance levels will be evaluated at this level.

softmax This parameter is used to influence the number of log files that
need to be recovered following a crash, and determine the
frequency of soft checkpoints. To influence the number of log files
required for crash recovery, the database manager uses this
parameter to trigger the page cleaners to ensure that pages older
than the specified recovery window are already written to disk.
The default is 100, which tries to keep the number of logs that
need to be recovered to 1.

Parameter Description

 Chapter 2. DB2 UDB architecture overview 63

Table 2-13 lists some of the performance-related environment and registry
variables of interest on all platforms.

Table 2-13 Registry and environment performance variables for all platforms

Attention: It is strongly recommended that all DB2 specific registry values be
defined in the DB2 profile registry. If DB2 variables are set outside of the
registry, remote administration of those variables will not be possible.

Variable name Description

DB2_AVOID_PREFETCH Specifies whether prefetch should be used during crash recovery. When
set to OFF (default), prefetch is used.

DB2_BINSORT Enables a new sort algorithm that reduces the CPU, sort and elapsed time.
This new algorithm extends the extremely efficient integer sorting
technique of all data types such as BIGINT, CHAR, VARCHAR, DECIMAL
and combinations of these data types.
The default is YES.

DB2_ENABLE_BUFPD Specifies whether or not DB2 uses intermediate buffering to improve
query performance. This buffering may not improve performance in all
environments. Testing should be done to determine individual query
performance improvements
The default is OFF.

DB2MAXFSCRSEARCH Specifies the number of free-space control records to search when adding
a new record to a table. The default is 5, which searches 5 free space
control records.
Setting the value to -1 will force the database manager to search all free
control records.

DB2_OVERRIDE_BPF Specifies the size of the buffer pool to be created at database activation or
first connection time. It is useful when failures occur during database
activation or first connection resulting from memory constraints. Should
even a minimal buffer pool of 16 pages not be brought up by the database
manager, then the user can try again after specifying a smaller number of
pages using this environment variable.
The default is not set.

64 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Table 2-14 lists the performance-related environment and registry variables for
the AIX platform.

Table 2-14 Some of the performance variables for the AIX platform

Table 2-15 on page 66 lists the performance-related environment and registry
variables for the Windows NT/2000/2003 platforms.

DB2_PARALLEL_IO This parameter lets you specify the table spaces (identifiers) for which DB2
may use parallel I/O when reading or writing data from and to table space
containers. The degree of parallelism is determined by the prefetch size
and extent size for the containers in the table space; for example, if the
prefetch size is four times the extent size, then there are four extent-sized
prefetch requests. The number of containers in the table space does not
affect the number of prefetchers. To enable parallel I/O for all table spaces,
use the wildcard character, ‘*’
When this variable is not enabled, the number of prefetcher requests is
based on the number of containers in the table space.
The default is null.

Variable name Description

Variable name Description

DB2MEMDISCLAIM On AIX, memory used by DB2 processes may have associated paging
space that may remain reserved even when the associated memory has
been freed; this depends upon AIX’s virtual memory management
allocation policy. This variable controls whether DB2 agents explicitly
request that AIX disassociate the reserved paging space from the freed
memory.
The default is set to YES, which results in smaller paging space
requirements and possibly less disk activity from paging.

DB2MEMMAXFREE Specifies the maximum number of bytes of unused private memory, that is
retained by DB2 processes before unused memory is returned to the
operating system.

DB2_MMAP_READ Used together with DB2_MMAP_WRITE to allow DB2 to use mmap as an
alternate method of I/O. IN most environments, mmap should be used to
avoid operating system locks when multiple processes are writing to
different sections of the same file.
The default is set to ON.

DB2_MMAP_WRITE Used in conjunction with DB2_MMAP_READ to allow DB2 to use mmap as an
alternate method of I/O.
The default is set to ON.

 Chapter 2. DB2 UDB architecture overview 65

Table 2-15 Performance registry variables for Windows NT/ 2000/2003 platform

2.6 Performance monitoring facilities
DB2 provides a number of facilities to monitor the DB2 environment. The
following system and application monitoring tools are briefly described in the
following sections:

� CLI/ODBC/JDBC trace
� Database System Monitor
� DB2 administration notification log
� db2batch
� db2diag.log
� DB2 Performance Expert (PE)
� Design Advisor
� Explain and Visual Explain
� Health Monitor and Health Center
� Memory Tracker
� Memory Visualizer

Variable name Description

DB2_AWE Allows DB2 UDB on 32-bit platforms to allocate buffer pools that use up to
64 GB of memory if Windows 2000 is configured to support Address
Windowing Extensions (AWE) buffer pools.
The default value is set to null.

DB2NTMEMSIZE Windows NT® requires that all shared memory segments be reserved at
DLL initialization time in order to guarantee matching addresses across
processes. This variable permits the user to override the DB2 default on
Windows NT if necessary.
The default value varies by memory segment. In most situations, the
default is sufficient.

DB2NTNOCACHE Specifies whether DB2 opens database files with a NOCACHE option. If
set to ON, file system caching is eliminated. If set to OFF (default), the
operating system caches DB2 files. This applies to all data except for files
that contain long fields or LOBs. Eliminating system caching allows more
memory to be available to the database so that the buffer pool or sort heap
can be increased.
One MB is reserved from system pool for every one GB in the file. This
registry variable may be used to override the undocumented 192 MB limit
for the cache. When this limit is reached, an out-of-resource error is given.
The default is OFF.

66 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

2.6.1 CLI/ODBC/JDBC trace
The DB2 CLI and JDBC drivers offer extensive tracing facilities. Tracing
generates one or more log files when an application accesses a DB2 CLI or DB2
JDBC driver. The log files provide the following information:

� Order in which CLI or JDBC functions are called by application

� Contents of input and output parameters passed to and received from CLI or
JDBC functions

� Return code and error or warning messages generated by DB2 CLI or DB2
JDBC functions

DB2 CLI and DB2 JDBC trace facilities help application developers debug
programs, and also assist the DBA in tuning the application, as follows:

� A DB2 CLI trace may show a table being queried many times on a particular
set of attributes, suggesting that an index corresponding to those attributes
may improve application performance.

� Understand third party application software calls to the database, even
though there is no flexibility to modify the SQL itself.

A DB2 CLI trace reads configuration parameters from the DB2 CLI configuration
file db2cli.ini located in the sqllib directory. The contents of db2cli.ini may be
viewed by issuing the following command:

db2 get cli cfg for section common

The following command updates the db2cli.ini file and enables the DB2 CLI trace
facility:

DB2 update cli cfg for section common using trace 1

For more details, refer to DB2 UDB Call Level Interface Guide and Reference,
Volume 1, SC09-4849 and DB2 UDB Call Level Interface Guide and Reference,
Volume 2, SC09-4850.

The DB2 UDB Version 8 JDBC trace is invoked by embedding the code shown in
Example 2-2 on page 67. The trace is written to driverLog.txt.

Example 2-2 Enabling JDBC trace in DB2 UDB Version 8

java.io.PrintWriter printWriter = null;
try {

printWriter =
new java.io.PrintWriter(

new java.io.BufferedOutputStream(

 Chapter 2. DB2 UDB architecture overview 67

new java.io.FileOutputStream("c:/temp/driverLog.txt"),
4096),

true);
} catch (java.io.FileNotFoundException e) {

java.lang.System.err.println(
"unable to establish a print writer for trace");

java.lang.System.err.flush();
return;

}

...

...

...

((com.ibm.db2.jcc.DB2Connection) con).setJccLogWriter(
printWriter,
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

If operating in a WebSphere® environment, add the following two properties to
the datasource you want to trace as shown in Example 2-3, and then stop and
start WebSphere.

Example 2-3 Adding properties to a datasource in WebSphere

Name Type Value
traceFile java.lang.String <path>\<filename>
traceLevel java.lang.Integer -1

2.6.2 Database System Monitor
Database monitoring is vital to the performance and health of the database
environment. DB2 provides two facilities, Snapshot Monitor and Event Monitor,
that collect information from the database manager, its databases, and any
connected applications. This information can be used to:

� Forecast hardware requirements based on database usage patterns
� Analyze the performance of individual applications or SQL queries
� Track the usage of indexes and tables
� Pinpoint the cause of poor system performance
� Assess the impact of optimization activities, for instance, altering database

manager configuration parameters, adding indexes, or modifying SQL queries

The Snapshot Monitor and Event Monitor are complementary monitoring
facilities, each serving a different purpose:

68 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� Snapshot Monitor captures a picture of the state of database activity at a
particular point in time, at the moment the snapshot is taken.

� Event Monitor collects information about the database and any connected
applications when specified events occur.

The Database System Monitor stores information it collects in entities called
monitor/data elements. Each monitor element stores information regarding one
specific aspect of the state of the database system. In addition, monitor elements
are identified by unique names and store a certain type of information.

Monitor elements store data in the following element types:

� Counter counts the number of times an activity occurs. Counter values
increase during monitoring. Most counter elements are resettable.

� Gauge indicates the current value for an item. Gauge values can go up and
down depending on database activity (for example, the number of locks held).
Gauge elements are not resettable.

� Water mark indicates the highest (maximum) or lowest (minimum) value an
element has reached since monitoring was started. Water mark elements are
not resettable.

� Information provides reference-type details of your monitoring activities. This
can include items such as partition names, aliases, and path details.
Information elements are not resettable.

� Timestamp indicates the date and time that an activity took place.

Monitor elements collect data for one or more logical data groups. A logical data
group is a collection of monitor elements that gather database system monitoring
information for a specific scope of database activity. Monitor elements are sorted
in logical data groups based on the levels of information they provide.

The Database System Monitor provides multiple ways of presenting monitor
data. Both the Snapshot Monitor and the Event Monitor have the option of storing
monitor information in files or SQL tables, viewing it on screen by directing it to
standard-out, or processing it in a client application.

Snapshot Monitor
Taking a snapshot gives information at a specific point in time; that is, a picture of
the current state of activity in the database manager for a particular object or
group of objects. Snapshot monitoring is useful in determining the current state
of a database and its objects and applications.

The information collected is controlled by a set of monitor switches defined in the
database manager configuration file; these switches and their default settings
are listed and described in Table 2-16 on page 70. There is a considerable

 Chapter 2. DB2 UDB architecture overview 69

amount of basic monitoring data that is not under monitor switch control, and will
always be collected regardless of switch settings. Figure 2-11 on page 72 shows
the monitoring data collected in relation to monitor switch settings.

Table 2-16 Snapshot Monitor switches

The following subsections briefly discuss:

� Setting monitor switches
� Taking a snapshot
� Using SQL snapshot functions

Setting monitor switches
Each monitoring application has its own logical view of the monitor switches and
the system monitor data. Upon startup, each application inherits its monitor
switch logical view settings from the DFT_MON_ parameters in the database
manager configuration file unless overridden by the application. This means that

Note: Event Monitors are not affected by monitor switches in the same way as
snapshot monitoring applications. When an Event Monitor is activated, it
automatically turns on the instance level monitor switches required by the
specific event types.

Monitor switch Default Description

DFT_MON_BUFPOOL OFF Buffer pool activity information such as
number of reads and writes, and time taken

DFT_MON_LOCK OFF Lock wait times and deadlock-related
information

DFT_MON_SORT OFF Sorting information such as number of heaps
used and sort performance

DFT_MON_STMT OFF SQL statement information such as start/stop
time and statement identification

DFT_MON_TABLE OFF Table activity information such as rows read
and written

DFT_MON_TIMESTAMP ON Times and timestamp information

DFT_MON_UOW OFF Unit of work information such as start/end
times and completion status

Note: Snapshot Monitor overhead depends upon the monitor switch settings,
but it generally has low performance overhead.

70 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

when counter element types are reset or initialized, it only affects the application
that reset or initialized them. An application taking snapshots can reset its view of
the counters for all databases or a specific database at any time by using the
following command:

db2 reset monitor for database <database_alias>r

A monitoring application can review and alter its logical view of the monitor switch
settings using the following commands:

db2 get monitor switches

db2 update monitor switches using sort on

The switches remain active until the application (CLP) detaches, or they are
deactivated with another update monitor switches command.

The database manager level switches may be changed by the following
command:

db2 update dbm cfg using sort on

This database manager level monitor switch update requires the application
performing the update to be explicitly attached to the instance for the updates to
dynamically take effect. Other existing snapshot applications will not be affected
by the dynamic update. New monitoring applications inherit the updated
instance-level monitor switch settings.

Taking a snapshot
While the Database System Monitor collects data based on monitor switch
settings, the retrieval of this data is done taking a database snapshot using the
get snapshot command.

The following command is an example of a database lock snapshot for the
sample database:

Note: Changes to the switch settings at the application level only affect the
application or session (CLP window) from where the switch was changed; it
does not affect the database manager switch settings.

Important: Set the database manager configuration file switches only if you
want to collect data as soon as the database manager is started, as this may
incur unnecessary overhead.

Otherwise, each monitoring application can set its own switches and the data
it collects becomes relative to the time its switches are set.

 Chapter 2. DB2 UDB architecture overview 71

db2 get snapshot for locks on sample

There are many options to the get snapshot command each of which retrieves
specific information of interest. Figure 2-11 on page 72 illustrates the kinds of
information retrieved for each option.

Figure 2-11 DB2 Snapshot Monitor syntax and data collection

Refer to DB2 UDB Command Reference, SC09-4828 for details on the get
monitor, update monitor, update dbm cfg, get snapshot and reset monitor
commands mentioned here.

Using SQL snapshot functions
DB2 UDB Version 8 supports the taking of a snapshot using SQL table functions,
where each snapshot table function corresponds to a particular snapshot request
type. The function has as input the name of database, and the partition number.

P A
database A S P P A A A A

all applications A S P P A S A A A
bufferpools S

all A A S P P A S A A A A A P
database A S P P A A A A

bufferpools S
applications on A S P P A S A A A A

tables <database>

tablespaces A S
locks P S A

dynamic sql P

DB2 Snapshot Monitors

g
e
t

s
n
a
p
s
h
o
t

f
o
r

Tables

Tablespaces

M
em

ory pools

B
ufferpool &

 I/O

Lock sum
m

ary

Lock detail

Sorts

Agents

C
PU

 utilization

R
ow

s
read/selected

Pkg/Sect/C
at

cache

Application state

SQ
L stm

t activity
Sel/ins/upd/del

Log usage

D
ynam

ic SQ
L

..and
some pretty
useful

things

database manager

...how to
get it

What you can get...

A - always collected S - collected only when monitor switch is on
P - collected when switch is on, partially collected when switch is off

72 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

You can use select * SQL statement to retrieve all monitor elements from the
returned table, or select individual elements of interest.

The following is an example of selecting database manager level information
using the SQL snapshot function:

SELECT * FROM TABLE(SNAPSHOT_DBM(-1)) AS T

Refer to DB2 UDB System Monitor Guide and Reference, SC09-4847 for
complete details on SQL snapshot functions.

Event Monitor
Event Monitors are used to collect information about the database and any
connected applications when specified events occur. Events represent transitions
in database activity such as connections, deadlocks, statements and and
transactions.

Event Monitors have to be created for specific event types, and activated for data
collection to occur. Table 2-17 lists the available event types, when the monitor
data is collected, and information about each event type.

Table 2-17 Event Monitor event types

Attention: Whereas the Snapshot Monitor is typically used for preventative
maintenance and problem analysis (routine and online/realtime event
monitoring), Event Monitors are used to alert administrators to immediate
problems or to track impending ones (exception monitoring).

Event type When data is collected Available information

DEADLOCK Detection of a deadlock Applications involved and locks in
contention.

DEADLOCK
WITH DETAIL

Detection of a deadlock Applications involved, participating
statements and statement text, and
a list of the locks being held.

STATEMENT End of SQL statement Statements start /stop time, CPU
used, text of dynamic SQL, SQLCA,
and other metrics such as fetch
count.

TRANSACTIONS End of unit of work UOW start/stop time, previous UOW
time, CPU consumed, locking and
logging metrics.

CONNECTIONS End of connection All application-level counters.

 Chapter 2. DB2 UDB architecture overview 73

Each Event Monitor has its own, private logical view of the instance’s data in the
monitor elements. If a particular Event Monitor is deactivated and then
reactivated, its view of these counters is reset. Only the newly activated Event
Monitor is affected; all other Event Monitors will continue to use their view of the
counter values, plus any new additions.

Event Monitor output can be directed to SQL tables, a file, or a named pipe.

Consider using the Event Monitor in the following circumstances:

� Workload profile gathering at critical periods during the day.

� Determine transaction elapsed time, or how much CPU an SQL statement
used.

� Monitor deadlocks in transactions (this may not be as important, given the
advanced information now provided in the db2diag.log).

� Analyze long-running applications.

The following subsections briefly discuss:

� Creating an Event Monitor
� Activating an Event Monitor
� Performance considerations
� Viewing Event Monitor output

DATABASE Database deactivation All database level counters.

BUFFERPOOLS Database deactivation Counters for buffer pool,
prefetchers, page cleaner and direct
I/O for each buffer pool.

TABLESPACES Database deactivation Counters for buffer pool,
prefetchers, page cleaner and direct
I/O for each table space.

TABLES Database Deactivation Rows read/written for each table.

Attention: Event Monitor overhead depends upon the event types being
monitored, the workload characteristics during the activation, the duration the
Event Monitor is active, and the destination of the output data (to a file or
table). Performance overhead may therefore be significant, and Event
Monitors should be limited to short bursts with fine granularity of event types.
However, when debugging is involved, it is necessary to collect enough
information to diagnose the problem.

Event type When data is collected Available information

74 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Creating an Event Monitor
An Event Monitor is created using the CREATE EVENT MONITOR SQL statement,
which stores the metadata information in SYSCAT.EVENTMONITORS,
SYSCAT.EVENTS, and SYSCAT.EVENTTABLES system catalog tables.

Event Monitors may be created via the Control Center, or by executing the
following SQL statement:

db2 create event monitor my_event for statements write to table

The write to table clause specifies that the Event Monitor output should be
written to SQL tables, and the database creates the necessary target tables as
listed and described in Table 2-18. These tables must then be managed by the
DBA, such as pruning.

Table 2-18 Write to table Event Monitor target tables

Event type Target table names Available information

DEADLOCKS CONNHEADER
DEADLOCK
DLCONN
CONTROL

Connection metadata
Deadlock data
Application and locks involved in deadlock
Event Monitor metadata

DEADLOCK
WITH DETAILS

CONNHEADER
DEADLOCK
DLCONN
DLLOCK
CONTROL

Connection metadata
Deadlock data
Application involved in deadlock
Locks involved in deadlock
Event Monitor metadata

STATEMENTS CONNHEADER
STMT
SUBSECTION
CONTROL

Connection metadata
Statement data
Statement data specific to subsection
Event Monitor metadata

TRANSACTIONS CONNHEADER
XACT
CONTROL

Connection metadata
Transaction data
Event Monitor metadata

CONNECTIONS CONNHEADER
CONN
CONTROL

Connection metadata
Connection data
Event Monitor metadata

DATABASE DB
CONTROL

Database manager data
Event Monitor metadata

BUFFERPOOLS BUFFERPOOL Buffer pool data
Event Monitor metadata

TABLESPACES TABLESPACE
CONTROL

Table space data
Event Monitor metadata

 Chapter 2. DB2 UDB architecture overview 75

Refer to DB2 UDB SQL Reference Volume 2, SC09-4845 for the syntax of the
SQL statements mentioned here.

Activating an Event Monitor
Event Monitors only collect event data when they are active. To activate or
deactivate an existing Event Monitor, use the SET EVENT MONITOR STATE SQL
statement.

The following SQL statement activates the my_event Event Monitor:

db2 set event monitor my_event state 1

To deactivate the my_event Event Monitor, execute the following SQL statement:

db2 set event monitor my_event state 0

The status of an Event Monitor (active or inactive) can be determined by the SQL
function EVENT_MON_STATE as follows:

select evmonname, event_mon_state(evmonname) from syscat.eventmonitors

A result of 1 indicates active, 0 indicates inactive, and null means undefined
Event Monitor name.

Refer to DB2 UDB SQL Reference Volume 2, SC09-4845, for the syntax of the
SQL statements mentioned here.

Performance considerations
Performance may be impacted by the following:

� Highly active Event Monitors may benefit from large buffer sizes for the target
Event Monitor tables. The default is 4 pages, and can be increased as follows:

db2 create event monitor my_event for connections, deadlock with
details write to table buffersize 8

Here, 8 is combined capacity (in 4 K pages) of two event table buffers. This
sums to 32 K of buffer space, 16 K for each buffer.

TABLES TABLE
CONTROL

Table data
Event Monitor metadata

Note: Event Monitor buffers are allocated from dbheap.

Event type Target table names Available information

76 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� Database agents blocked by default. These wait for the event buffers to be
written to the target Event Monitor tables if the buffers are full. This can
degrade database performance.

Using the NONBLOCKED option can improve performance in highly active
Event Monitors, but may result in loss of event data.

db2 create event monitor my_event for statements write to table
buffersize 8 nonblocked

Viewing Event Monitor output
Before viewing the output, it is desirable to flush the contents of the Event
Monitor buffers. This can be done by either deactivating the Event Monitor, or by
using the FLUSH EVENT MONITOR SQL statement.

The FLUSH EVENT MONITOR SQL statement writes current database monitor values
for all active monitor types associated with Event Monitor event-monitor-name to
the Event Monitor I/O target. Therefore, a partial event record is available for
Event Monitors that have a low record generation frequency (such as a database
Event Monitor). Such records are noted in the Event Monitor log with a partial
record identifier.

The following SQL statement flushes the Event Monitor buffers:

db2 flush event monitor my_event

The Event Monitor output data can be analyzed either by third party event
analyzer GUI tools, or the db2eva event analyzer command.

Figure 2-12 on page 78 shows the creation and activation of an Event Monitor
that is written to SQL tables, and selective querying of these tables to view the
desired output.

 Chapter 2. DB2 UDB architecture overview 77

Figure 2-12 Viewing Event Monitor output

Query A in Figure 2-12 queries the contents of the connection Event Monitor
table to find the query using the most CPU cycles. This also revealed that
AGENT_ID 177 was reading a large number (1820886) of rows.

Using the agent_id (177) of the long-running query, we then queried the
statement Event Monitor table using Query B to obtain the SQL statement
details.

Refer to DB2 UDB Command Reference, SC09-4828 for details about the db2eva
command. Refer to DB2 UDB SQL Reference Volume 2, SC09-4845 for the
syntax of the SQL statements mentioned here. Refer to DB2 UDB System
Monitor Guide and Reference, SC09-4847 for complete details on viewing Event
Monitor output.

Query A output

Query B output

78 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

2.6.3 DB2 administration notification log
The notification log was introduced in DB2 UDB Version 8 and records a subset
of the events such as error and administration logging recorded in prior DB2
versions of the db2diag.log. This information helps DBAs in problem diagnosis.

The administration notification log can also be accessed from the Control Center
by selecting Tools -> Journal, as shown in Figure 2-13 on page 80.

Note: In UNIX, the administration notification log is a text file called
<instance>.nfy, and it is located in <INSTHOME>/sqllib/db2dump, where
<INSTHOME> is the home directory of the instance owner.

On Windows, the administration notification log is written to the Windows
Event Log.

 Chapter 2. DB2 UDB architecture overview 79

Figure 2-13 The DB2 administration notification log

As in the case of the db2diag.log, the level of detailed information recorded in the
administration notification log is determined by the NOTIFYLEVEL database
manager configuration parameter, as shown in Table 2-19 on page 81.

80 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Table 2-19 Administration notification log NOTIFYLEVEL

NOTIFYLEVEL 4 can provide the following locking-related information:

� Locked object, lock mode, and application holding the lock.

� Current dynamic SQL statement or static package name.

� Detailed deadlock information.

� All tables for which locks are escalated, including:

– Number of locks currently held.

– Number of locks needed before escalation is completed.

– Table identifier information and table name of each table being escalated.

– Number of non-table locks currently held.

– The table level lock to be acquired as part of the escalation—usually a
Shared lock “S” or eXclusive “X” lock.

For more details on the administration notification log, refer to DB2 UDB
Administration Guide: Performance, SC09-4821.

NOTIFYLEVEL Description

0 No administration notification messages captured.

1 Only fatal and unrecoverable error are logged. To recover from
some of these conditions, you may need assistance from DB2
service.

2 Conditions that require immediate attention from the SYSADM or
DBA are logged. If the condition is not resolved, it could lead to a
fatal error. This level captures Health Monitor alarms. These are in
addition to NOTIFYLEVEL 1 messages.

3 (default) Conditions that are non-threatening and do not require immediate
action are logged, but it may indicate a non-optimal system. This
level will capture Health Monitor alarms, warnings, and attentions.
These are in addition to NOTIFYLEVEL 1 and 2 messages.

4 Informational messages as well. These are in addition to
NOTIFYLEVEL 1, 2 and 3 messages.

Important: Specify NOTIFYLEVEL of 2 or higher for the Health Monitor to send
notifications to the appropriate contacts defined in its configuration.

Note: NOTIFYLEVEL 4 should normally be used only in exception monitoring
situations.

 Chapter 2. DB2 UDB architecture overview 81

2.6.4 db2batch
This tool can read SQL statements from either a flat file or standard input,
dynamically describe and prepare the statements, and return an answer set. It
also allows you to control the size of the answer set, as well as the number of
rows that are sent from this answer set to an output device.

You can specify the level of performance-related information supplied, including
the elapsed time, CPU and buffer pool usage, locking, and other statistics
collected from the database monitor. If you are timing a set of SQL statements,
db2batch also summarizes the performance results and provides both arithmetic
and geometric means.

This tool is particularly useful in problem diagnosis of queries that run for a very
long time, since it provides detailed information about resource utilization
including time spent in compilation and execution.

Example 2-4 shows an example of a db2batch input file.

Example 2-4 db2batch input file

--db2batch.sql

--#SET PERF_DETAIL 3 ROWS_OUT 5
--This query lists employees,the name of their department
--and the number of activities to which they are assigned for
--employees who are assigned to more than one activity less than
--full-time.
--#COMMENT Query 1
select lastname,firstnme,
deptname,count(*)as num_act
from employee,department,emp_act
where employee.workdept =department.deptno and
employee.empno =emp_act.empno and
emp_act.emptime <1
group by lastname,firstnme,deptname
having count(*)>2;
--#SET PERF_DETAIL 1 ROWS_OUT 5
--#COMMENT Query 2
select lastname,firstnme,
deptname,count(*)as num_act
from employee,department,emp_act
where employee.workdept =department.deptno and
employee.empno =emp_act.empno and
emp_act.emptime <1
group by lastname,firstnme,deptname
having count(*)<=2;

82 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

db2batch can be invoked via the following command:

db2batch -d sample -f db2batch.sql

Example 2-5 shows the output of db2batch for the db2batch.sql file shown in
Example 2-4 on page 82.

Example 2-5 db2batch sample output

--#SET PERF_DETAIL 3 ROWS_OUT 5
Query 1
Statement number:1
select lastname,firstnme,
deptname,count(*)as num_act
from employee,department,emp_act
where employee.workdept =department.deptno and
employee.empno =emp_act.empno and
emp_act.emptime <1
group by lastname,firstnme,deptname
having count(*)>2
LASTNAME FIRSTNME DEPTNAME NUM_ACT

JEFFERSON JAMES ADMINISTRATION SYSTEMS 3
JOHNSON SYBIL ADMINISTRATION SYSTEMS 4
NICHOLLS HEATHER INFORMATION CENTER 4
PEREZ MARIA ADMINISTRATION SYSTEMS 4
SMITH DANIEL ADMINISTRATION SYSTEMS 7
Number of rows retrieved is:5
Number of rows sent to output is:5
Elapsed Time is:0.074 seconds
Locks held currently =0
Lock escalations =0
Total sorts =5
Total sort time (ms)=0
Sort overflows =0
Buffer pool data logical reads =13
Buffer pool data physical reads =5
Buffer pool data writes =0
Buffer pool index logical reads =3
Buffer pool index physical reads =0
Buffer pool index writes =0
Total buffer pool read time (ms)=23
Total buffer pool write time (ms)=0
Asynchronous pool data page reads =0
Asynchronous pool data page writes =0
Asynchronous pool index page reads =0
Asynchronous pool index page writes =0
Total elapsed asynchronous read time =0
Total elapsed asynchronous write time =0
Asynchronous read requests =0

 Chapter 2. DB2 UDB architecture overview 83

LSN Gap cleaner triggers =0
Dirty page steal cleaner triggers =0
Dirty page threshold cleaner triggers =0
Direct reads =8
Direct writes =0
Direct read requests =4
Direct write requests =0
Direct read elapsed time (ms)=0
Direct write elapsed time (ms)=0
Rows selected =5
Log pages read =0
Log pages written =0
Catalog cache lookups =3
Catalog cache inserts =3
Buffer pool data pages copied to ext storage =0
Buffer pool index pages copied to ext storage =0
Buffer pool data pages copied from ext storage =0
Buffer pool index pages copied from ext storage =0
Total Agent CPU Time (seconds)=0.02
Post threshold sorts =0
Piped sorts requested =5
Piped sorts accepted =5
--#SET PERF_DETAIL 1 ROWS_OUT 5
Query 2
Statement number:2
select lastname,firstnme,
deptname,count(*)as num_act
from employee,department,emp_act
where employee.workdept =department.deptno and
employee.empno =emp_act.empno and
emp_act.emptime <1
group by lastname,firstnme,deptname
having count(*)<=2
LASTNAME FIRSTNME DEPTNAME NUM_ACT

GEYER JOHN SUPPORT SERVICES 2
GOUNOT JASON SOFTWARE SUPPORT 2
HAAS CHRISTINE SPIFFY COMPUTER SERVICE DIV.2
JONES WILLIAM MANUFACTURING SYSTEMS 2
KWAN SALLY INFORMATION CENTER 2
Number of rows retrieved is:8
Number of rows sent to output is:5
Elapsed Time is:0.037 seconds
Summary of Results
==================
Elapsed Agent CPU Rows Rows
Statement #Time (s)Time (s)Fetched Printed
1 0.074 0.020 5 5
2 0.037 Not Collected 8 5

84 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Arith.mean 0.055
Geom.mean 0.052

For more information on usage, syntax and options, refer to DB2 UDB Command
Reference, SC09-4828, and to DB2 UDB Administration Guide: Performance,
SC09-4821.

2.6.5 db2diag.log
DB2 captures event information when it detects a problem in the system. The
level of detailed information captured is determined by the DIAGLEVEL database
manager configuration parameter, as shown in Table 2-20.

DB2 diagnostic log information is used for problem determination, and is
primarily intended for DB2 customer support. However it may be of interest to
DBAs as well. The goal is to move DBA interest information to the administration
notification log.

Table 2-20 Diagnostic log DIAGLEVEL

Figure 2-14 displays the header information for a sample log entry; however, not
every entry will contain all of these parts.

Figure 2-14 db2diag.log header information

NOTIFYLEVEL Description

0 No diagnostic data captured

1 Severe errors only

2 All errors

3 (default) All errors and warnings

4 All errors, warnings and informational messages

 Chapter 2. DB2 UDB architecture overview 85

The following explains the values in Figure 2-14 on page 85:

� (1) Timestamp of the message.

� (2) Name of the instance generating the message.

� (3) For multi-partition systems, the partition generating the message. In a
non-partitioned database, the value is 000.

� (4) The process ID of the EDU encountering the error.

� (5) The thread ID of the EDU encountering the error (Windows only).

� (6) Identification of application associated with the process.

� (7) The DB2 component writing the message.

� (8) The name of the function generating the message. This function operates
within the DB2 subcomponents writing the message. To find more about the
activity performed by a function, look at the fourth letter of its name. In this
example, the letter id p in the function sqlpinit indicates a data protection
problem or information.

Table 2-21 explains some of the letters in the fourth position ;the database
name is also shown, when available.

� (9) The unique identifier. This number allows DB2 customer support and
development to locate the pinpoint the message in the DB2 source code.

� (10) When available, a message indicating the error type and number as a
hexadecimal code and a text message explaining the logged event.

Table 2-21 The function activities

The fourth letter in
function activity

Description

b Buffer pools

c Communication between the client and server

d Data management

e Engine Processes

o Operating System Calls (opening and closing files)

p Data Protection (locking and logging)

r Relational Data Services

s Sorting

x Indexing

86 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Table 2-22 lists and explains some of the components identified in the diagnostic
log.

Table 2-22 DB2 UDB - the most common engine components

Engine component Description

sql, squh DB2 backup and restore.

sqb DB2 Buffer Pool Services (buffer pool, data storage
management, table spaces, containers, I/O, prefetching and
page cleaner).

clp DB2 Command Line Processor.

sqng, CodeGen This component is part of the SQL compiler and represents
the last phase of statement compilation.

sqv Data Services, responsible for data type comparison and
conversion. This component includes routines that do the
following:

� Convert between char, graphic and numeric types.

� Perform decimal, floating and integer arithmetic.

� Perform date, time, timestamp, arithmetic and
conversion.

� Compare any data type to any other data type (limited to
the comparisons DB2 support). These comparison
routines are used by the Index Manager, Sort Services,
Runtime Interpreter and other components.

dlfm Data links file manager functionality which allows DB2 to
manage files that are stored external to the database.

sqd, sqdx, sqdl,
dart

DB2 Data Management Services:

� Tables, records, long field and large object columns.

� Recovery (rollforward, rollback).

� Table and record locking.

sqp, sqdz Data Protection Services, logging.

sqx DB2 Index Manager.

squ, sqi, sqs, squs DB2 Load, Import, Export, Sort.

sqno, sqnx, runstats DB2 Query Optimizer, Explain and Runstats.

sqo, sqt, sqz DB2 Engine Operation System Services.

 Chapter 2. DB2 UDB architecture overview 87

For more information on the db2diag.log, refer to the Online DB2 troubleshooting
information via the DB2 Online Support site:

http://www.ibm.com/software/data/db2/udb/winos2unix/support

2.6.6 DB2 Performance Expert
DB2 Performance Expert is a new, IBM-supplied host-based and
workstation-based performance analysis and tuning tool for both the z/OS® and
multiplatform environments. Many installations have more than one DB2 system;
at a minimum you might have test, production and other systems. In some cases,
they also have a mix of z/OS and multiplatform environments. With DB2 PE, you
can manage a heterogeneous mix of DB2 systems via a single end-user
interface.

The main objective of DB2 PE is to simplify DB2 performance management. DB2
PE gives you the capability of monitoring applications, system statistics, and
system parameters via a single tool.

DB2 PE integrates performance monitoring, reporting, buffer pool analysis, and a
Performance Warehouse function into a single tool. It optimizes the performance
of IBM DB2 for z/OS and OS/390, and of DB2 UDB, by providing a
comprehensive view of DB2 performance-related information. It also provides
you with reports, analysis, and recommendations.

In general, DB2 PE includes the following advanced capabilities:

� Provides detailed analysis of key performance factors that let you control and
tune the performance of DB2 and DB2 applications.

� Provides a real-time online monitor, a wide range of reports, expert analysis,
and an explain feature to analyze and optimize SQL statements.

� Lets you simulate certain tuning actions of buffer pools before you change
your system.

� Includes a Performance Warehouse function for storing performance data
and analysis functions.

� Lets you monitor Database Connection Services (DCS) connections via
Performance Expert Agent.

sqe, sqkd, sqkf DB2 Process model, FCM, Connect, Gateway Connection
Pooling, Concentrator, db2start, db2stop, create/drop at
node, activate/deactivate database, add/drop node, interrupt
handling, node failure and recovery, Engine Operating
Services.

Engine component Description

88 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

http://www.ibm.com/software/data/db2/udb/winos2unix/supp

The following subsections provide a summary of all functions. The availability of
these functions, however, varies depending on whether you install DB2
Performance Expert for z/OS, DB2 Performance Expert for Multiplatforms, or one
of the standalone products DB2 PM or Buffer Pool Analyzer.

Basic functions on all platforms
DB2 PE provides the following functions across all platforms:

� Analyzes and tunes the performance of DB2 and DB2 applications.

� Provides expert analysis, a real-time online monitor, and a wide range of
reports for analyzing and optimizing DB2 application and SQL statements.

� Includes a Performance Warehouse for storing performance data and
analysis tools.

� Defines and applies analysis functions (rules of thumb, queries) to identify
performance bottlenecks.

Specific functions on z/OS
DB2 PE provides the following functions on z/OS:

� An explain feature.

� A Reporting Facility that presents detailed information about DB2 events
involving CPU times, buffer pool usage, locking, I/O activity, and more.

� The ability to manage buffer pools more efficiently by providing information
about current buffer pool behavior and simulating anticipated future behavior.

� Exception reports for common performance problems to help identify and
quantify excessive CPU and elapsed time on a plan and package basis.

Specific functions on Multiplatforms
DB2 PE provides the following functions on Multiplatforms:

� A starter set of smart features that provide recommendations for system
tuning to gain optimum throughput.

� A subset of the Reporting Facility functionality provided on z/OS.

� A subset of the Exception reports functionality provided on z/OS.

� DB2 Buffer Pool Analyzer collects data and provides reports on related event
activity, to obtain information on current buffer pool behavior. It can provide
these reports in the form of tables, pie charts, and diagrams.

� Monitors DB2 Connect Gateways including application and system-related
information.

 Chapter 2. DB2 UDB architecture overview 89

The main components of the DB2 Performance Expert Tool are shown in
Figure 2-15.

Figure 2-15 Main components of DB2 Performance Expert

A brief description of each of these components follows:

� Performance Expert Client designates the end-user interface of DB2 PE of
z/OS and Multiplatforms.

� Performance Expert Server for z/OS accesses DB2 UDB for Z/OS and
OS/390.

� Performance Expert Server for Multiplatforms accesses DB2 UDB for
Windows, UNIX, Linux on zSeries®, and Linux (IA32).

Attention: For a detailed description of the different capabilities and specific
platform support, refer to IBM DB2 Performance Expert for z/OS and
Multiplatforms Monitoring Performance from the Workstation, SC27-1645, and
to the corresponding Announcement Letters.

Performance Expert
Client

Performance Expert
Server for z/OS

Performance Expert
Server for

Multiplatforms

Performance Expert
Agent

DB2 UDB
for z/OS

and
OS/390

DB2 UDB
(AIX,

Linux,
Windows)

Server ComponentsEnd User Interface Database Engine

90 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� Performance Expert Agent monitors Database Connection Services (DCS)
connections within the Distributed Relational Database Architecture™
(DRDA®). When Performance Expert Agent is installed on the system on
which DCS connections are performed, it collects connection-related data,
such as the status of a DCS connection. It also collects statistics about DB2
Connect activities. The collected data is then stored in the DB2PM database
on a Performance Expert Server.

Figure 2-16 provides an overview of how Performance Expert Agent is
integrated into the system environment. The DB2PM database (also known
as DB2 Performance Expert Performance Database) stores performance
data collected from the initiation of various traces and Event Monitors. DB2
PE provides various canned queries to report the content of this performance
data.

Figure 2-16 Performance Expert Agent and system environment

Figure 2-17 on page 92 describes the general environment structure of DB2 PE
for Multiplatforms.

DB2 Connect
(Gateway)

DB2 UDB
DB2 Client

(thin Client without database/
seperate DB2 UWO or zOS)

Network Network

PE Server PE Agent

JDBC

Database 'DB2PM '

JDBC DB2 Performance Expert
Workstation Online Monitor

 Chapter 2. DB2 UDB architecture overview 91

Figure 2-17 DB2 PE for Multiplatforms environment structure

The figure shows the DB2 PE Client monitoring two DB2 EE systems and one
DB2 EEE system.

It should be noted that there is a DB2 PE Server and a DB2PM database
associated with each DB2 instance, with a future goal of sharing a single DB2PM
database across multiple DB2 instances.

Both the DB2 PE Client and the DB2 PE Server support Windows 2000, AIX,
Solaris, HP-UX and Linux (IA32) platforms.

For further details, refer to DB2 UDB Performance Expert for Multiplatforms: A
Usage Guide, SG24-6436.

Note: Performance Warehouse (PWH) tables are included in the DB2PM
database.

 MP_DB2

MPDB_n

 MP_DB2

MPDB_...

 MP_DB2

MPDB_2

 MP_DB2

MPDB_1

 Online Monitor

WS

DB2PM

PE
Server

API

APP1

APP2

B555Z6AH

PE
Server

API

APP3

PWH
DB2PM

Dallas

PE
Server PWH

API

APP4

The PE Server is attached to one DB2
Instance. The PE Server has at least some
control tables and temporary tables on
each DB2 instance within database DB2PM.

control

PWH
DB2PM
control

DB2PM
control

 MP_DB2

PE
Server

API

MPDB_0

DB2PM

control

A multi-partition instance needs only 1
PE server attached to one of the
partitions. The monitor view will allow:

single partition view
multi-partition aggregated view
mult-ipartition table view

92 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

2.6.7 Design Advisor
The Design Advisor helps with the design of suitable indexes for a given table by
finding the best indexes for a problem query, as well as the best indexes for a set
of queries that define a workload subject to optionally applied resource limits.

For a given workload, the Design Advisor will evaluate the existing indexes and
recommend additional indexes if required.

A workload in the context of the Design Advisor is a set of SQL statements which
the database manager has to process during a given period of time. The SQL
statements can include SELECT, INSERT, UPDATE, and DELETE statements.

The information in the workload identifies the type and frequency of the SQL
statements over a given period of time. For example, your database manager
may have to process 1 000 INSERTs, 10 000 UPDATEs, 10 000 SELECTs, and 1 000
DELETEs in a one month period. The Design Advisor’s advising engine uses this
workload information in conjunction with the database information (such as
statistics) to recommend indexes. The goal of the Design Advisor’s advising
engine is to minimize the total workload cost.

The Design Advisor may be invoked via the db2advis command, as shown in
Figure 2-18 on page 94, or from the Control Center.

Note: These recommendations should be validated through actual
measurements in regression test environments before committing the
changes in the production environment.

 Chapter 2. DB2 UDB architecture overview 93

.

Figure 2-18 Design Advisor

The recommended way to start Design Advisor is from the Control Center
(Tools -> Wizards -> Design Advisor), since it can help you construct a
workload. That is, it can look for recently executed SQL statements, look at
recently used packages, or let you supply all the SQL statements in the
workload.

For more information on the Design Advisor, refer to DB2 UDB Administration
Guide: Performance, SC09-4821.

2.6.8 Explain and Visual Explain
DB2 provides a comprehensive explain facility that provides detailed information
about the access plan that the optimizer chooses for an SQL statement. Several
tools or methods give you the flexibility you need to capture, display, and analyze
explain information.

Table 2-23 on page 95 lists and identifies the various tools available with the DB2
explain facility, and their characteristics.

94 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Table 2-23 DB2 explain facility

Access path information is stored in EXPLAIN tables which can be queried to
retrieve the desired information. Either the GUI tool Visual Explain or the
text-based db2exfmt tool can be used to examine the contents of the EXPLAIN
tables.
\

Desired
characteristics

Visual
Explain

db2exfmt db2expln dynexpln

GUI interface Yes

Text output Yes Yes Yes

“Quick and dirty”
Static SQL
analysis

Yes

Static SQL
supported

Yes Yes Yes

Dynamic SQL
supported

Yes Yes Yes Yes*

CLI application
support

Yes Yes

Suited for
analysis of
multiple
statements

Yes Yes Yes

Detail optimizer
information

Yes Yes

Note: EXPLAIN tables can be created by the db2 -tf EXPLAIN.DDL command
or automatically by the Control Center.

 Chapter 2. DB2 UDB architecture overview 95

Table 2-24 lists and describes the various EXPLAIN tables. Figure 2-19 on
page 97 shows the relationship between some of them.

Table 2-24 EXPLAIN tables

Table name Description

EXPLAIN_INSTANCE The main control table for all EXPLAIN information. Each
row in the EXPLAIN tables is explicitly linked to one
unique row in this table.

EXPLAIN_STATEMENT This table stores the EXPLAIN snapshot, if it was
requested. Data is stored as Binary Large Object (BLOB),
which contains the internal representation of the access
plan and decision criteria used by the DB2 optimizer. A
row in the EXPLAIN_INSTANCE refers to multiple rows in
this table.

EXPLAIN_OPERATOR This table contains all the operators needed to satisfy the
query. The types of operators are FETCH, GRPBY,
IXSCAN, MSJOIN, NLJOIN, RIDSCN, SORT, TBSCAN,
TEMP or UNIQUE.

EXPLAIN_ARGUMENT This table contains the information for each operator. For
example, for a SORT operator, arguments such as
number of rows expected to be sorted are collected.

EXPLAIN_OBJECT This table identifies the data objects required by the
access plan. Types of objects are indexes, tables and
table functions.

EXPLAIN_STREAM This table represents the input and output data stream
between operators and objects, for example, the number
of columns represented and an estimate of the cardinality.

EXPLAIN_PREDICATE This table identifies which predicates are applied to a
specific operator.

ADVISE_WORKLOAD This table allows users to describe a workload to the
database. Each row in the table represents an SQL
statement in the workload and is described by an
associated frequency. The db2advis tool uses this
table to collect and store work and information.

ADVISE_INDEX This table stores information about recommended
indexes. The table can be populated by the SQL compiler,
the db2advis utility or a user. This table is used in two
ways:

� To get recommended indexes.

� To evaluate indexes based on input about proposed
indexes.

96 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 2-19 The relationship of EXPLAIN tables

Visual Explain is the GUI tool that can be invoked from the Control Center to view
or print a query’s access plan in the form of a graph. It can be used to view
snapshots captured on other platforms for both static and dynamic SQL
statements.

To explain an SQL statement by using the Visual Explain from the Control
Center, right-click the database name and select Explain SQL..., then write the
SQL to be explained, as shown in Figure 2-20 on page 98.

 Chapter 2. DB2 UDB architecture overview 97

Figure 2-20 The Explain SQL Statement

Figure 2-21 on page 99 is the access path in graphical form and it has a
bottom-up orientation; that is, it has to be interpreted from the bottom to the top.

98 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 2-21 The Visual Explain access path

The geometric shapes displayed are called nodes; they represent the different
access steps chosen by the optimizer. Tables are shown as rectangles, indexes
are shown as diamonds, operators are shown as octagons, TQUEUE are shown as
parallelograms, and functions are shown as hexagons.

 Chapter 2. DB2 UDB architecture overview 99

For more information on the explain facility, refer to DB2 UDB Administration
Guide: Performance, SC09-4821.

2.6.9 Heath Monitor and Health Center
DB2 UDB Version 8 has two new features to help monitor the health of the DB2
system, namely the Health Monitor and the Health Center. DB2 also provides a
set of health indicators to evaluate specific aspects of database manager or
database performance.

� Health Monitor is a server-side tool that periodically monitors the health of
the DB2 instance, and raises an alert if a user-defined threshold has been
reached or an abnormal state for an object is detected. When an alert is
raised, an e-mail alert notification can be sent to the DBA or system
administrator, and/or a script can be run from the Task Center.

Health Monitor information can be accessed from Health Center, Web Health
Center, the CLP, or via an API.

� Health Center provides the GUI interface to the Health Monitor; it can be
used to configure the Health Monitor. The Health Center also provides access
to information about a current alert, and the list of recommended actions that
describe how to resolve the alert.

You choose one of the recommended actions to address the alert. If the
recommended action is to make a database or database manager
configuration change, the new value will be recommended and may be
applied immediately by clicking the Apply button, as shown in Figure 2-22 on
page 101.

Note: The Health Monitor uses a new interface to gather information about
the health of the system, and imposes minimal performance overhead. It
does not require the setting of any snapshot switches to collect
information, and do not impose a performance penalty.

The Health Monitor is enabled by default when an instance is created, and
can disabled by setting the database manager configuration parameter
HEALTH_MON to OFF.

100 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 2-22 The Health Center

� Health indicators are used by the Health Center to evaluate specific aspects
of database manager or database performance. A health indicator is a
specific measurement tool to check the health of some aspect of database
objects. It allows the administrator to specify the particular indicator to be
evaluated, and the specific warning and alarm threshold to be applied, as
shown in Figure 2-23 for a particular database (for example, DTW).

 Chapter 2. DB2 UDB architecture overview 101

Figure 2-23 Health indicators

The command line interface also provides access and update capabilities to the
health indicators.

The following commands list the health indicators for an instance, the description
for a database level indicator db.spilled_sorts, the recommendations for a

102 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

particular health indicator, and a new snapshot command to retrieve a state of an
health indicator:

db2 get alert cfg for database manager

db2 get description for health indicator db.spilled_sorts

db2 get recommendations for health indicator db2.spilled_sort

db2 get health snapshot for database manager

For more details on health indicator attributes, refer to DB2 UDB System Monitor
Guide and Reference, SC09-4847.

2.6.10 Memory Tracker
DB2 UDB Version 8 introduced the Memory Tracker tool db2mtrk, which provides
a complete report of memory utilization for instances, databases and agents. The
Memory Tracker will implicitly attach to the instance, without requiring the user to
explicitly do so.

Figure 2-24 shows instance and database values.

Figure 2-24 Memory Tracker

For more details on Memory Tracker, refer to DB2 UDB Command Reference,
SC09-4828.

2.6.11 Memory Visualizer
DB2 UDB Version 8 Memory Visualizer is new GUI interface for uncovering and
fixing memory related problems of an instance. Memory Visualizer may be
invoked from “Health Center recommendations”, or independently as its own

 Chapter 2. DB2 UDB architecture overview 103

monitoring tool from the Control Center by right-clicking the instance_name and
selecting View Memory Usage.

The high-level memory components of Memory Visualizer are:

� Database manager shared memory
� Database global memory
� Application global memory
� Agent/Application shared memory
� Agent private memory

Each high-level memory component is divided into lower-level memory
components that determine how the memory is allocated and de-allocated.

Memory Visualizer can perform the following tasks:

� View overall memory usage
� Update configuration parameters for an individual memory component to

prevent it from using too much or too little memory
� Save memory allocation data
� Load memory allocation data from a file into a Memory Visualizer window

Figure 2-25 on page 105 provides an overview of Memory Visualizer. Historical
values of alarm and warning thresholds are displayed for each memory
component.

104 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 2-25 The Memory Visualizer

 Chapter 2. DB2 UDB architecture overview 105

106 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Chapter 3. Application design and
system performance
considerations

In this chapter we describe the key performance drivers that impact OLTP and BI
performance, and suggest best practices for achieving superior DB2 OLTP and
BI performance.

The topics covered are:

� OLTP and BI characteristics
� Key performance drivers
� Application design considerations
� System environment considerations

3

© Copyright IBM Corp. 2004. All rights reserved. 107

3.1 OLTP and BI characteristics
OLTP and BI environments have unique characteristics that require custom
application and system tuning to achieve optimal performance. In the past, these
two workload environments tended to be isolated from each other on different
machines, thus making this tuning effort easier to manage. However, the
differences between these workloads have begun to blur, with each workload
accessing data in the other’s domain. This trend may complicate the design and
tuning of these mixed environments.

The main characteristics of OLTP and BI environments are described here and
highlighted in Table 3-1 on page 110.

3.1.1 OLTP characteristics
OLTP environments support day-to-day, mission-critical business activities such
as order entry, stock trading, inventory management, and banking transactions.
This typically involves hundreds to thousands of users issuing millions of
transactions per day against large and small databases. Response time
requirements tend to be subsecond and stringent, and actions need to be
performed online and in real time.

OLTP workloads tend to have the following characteristics:

� Simple transactions, with each transaction issuing few simple SQL
statements, accessing few rows, and performing few I/Os. No intra-query
parallelism, few small sorts, and few indexes per table.

� Transactions perform a great deal of concurrent read and update activity.

� Predefined programmed applications.

� High throughput measured in hundreds of transactions per second, with the
requirement for subsecond end-user response time.

� Hundreds to thousands of concurrent users.

Attention: In this section, all performance recommendations assume that
OLTP and BI environments are isolated from each other. We leave it to the
reader to extrapolate the recommendations for these individual environments
into their particular mixed workload environment.

However, it is reasonable to assume that tuning in a mixed workload
environment needs to favor OLTP over BI because of OLTP’s more stringent
throughput and response time requirements.

108 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� Volume of data may be very large (hundreds of gigabytes to a few terabytes)
or just tens of gigabytes; however, each transaction typically accesses a few
rows only.

� Potentially, long-running batch jobs (typically off-shift), with many
“transactions” between commits.

� Very high availability requirements 7x24x365.

Performance of OLTP workloads are considerably enhanced by minimizing I/Os,
optimizing CPU utilization, eliminating sorts, and improving concurrency between
transactions.

3.1.2 BI characteristics
BI environments, on the other hand, involve gathering historical information from
OLTP systems and external sources, producing reports, mining and analyzing
information for trends and opportunities, and using the information thus gained to
make timely and effective business decisions to gain a competitive edge in the
marketplace. This typically involves a few users accessing very large databases,
with low throughput requirements and response time in minutes or a few hours.

BI workloads tend to have the following characteristics:

� Medium-to-very complex queries, with each query issuing few complex SQL
statements, accessing thousands to millions of rows, and performing
hundreds to thousands of I/Os. Significant intra-query parallelism, large
number and size of sorts, and many indexes per table.

� Queries are predominantly read only in nature.

� Canned, as well as ad hoc queries.

� Low throughput measured in tens to hundreds of queries per minute, with
response time requirements of minutes to hours.

� Tens to hundreds of concurrent users.

� Volume of data may be very large (hundreds of gigabytes to many terabytes),
with each query typically accessing thousands to millions of rows.

� Potentially, long-running extract and transformation jobs for loading data in to
data warehouses.

� Potentially, long-running large reports and data mining activity.

� Moderate availability requirements, except in the case of real-time BI.

Performance of BI workloads are considerably enhanced by optimizing I/Os,
having a large number of disks, promoting greater parallelism, eliminating sorts

 Chapter 3. Application design and system performance considerations 109

through indexing, and improving sort efficiency through adequate buffering and
I/O placement.

Table 3-1 OLTP versus BI characteristics

3.2 Key performance drivers
The performance of an OLTP or BI environment depends upon many factors
such as machine resources available, network bandwidth, and how well the
application has been designed and the system environment tuned to address the
specific performance objectives of the application workload.

Description OLTP environments BI environments

Mission-critical
applications.

Yes. Maybe.

Transaction profile. Simple, with few SQL
statements that typically
return few rows and
perform few I/Os. No
intra-query parallelism, few
small sorts, and few
indexes per table.

Medium-to-complex SQL
statements that typically
return hundreds of rows
and perform thousands of
I/Os. Significant
intra-query parallelism,
large number and size of
sorts, and many indexes
per table.

Transaction profile. Updates and reads, but
mainly pre-programmed;
no ad hoc.

Predominantly read only;
mix of canned and ad hoc.

Throughput measure. Hundreds to thousands of
transactions per second.

Tens to hundreds of
queries per minute.

Number of concurrent
users.

Hundreds to thousands. Tens to hundreds of users.

Volume of data involved. Few gigabytes to hundreds
of gigabytes to a few
terabytes.

Hundreds of gigabytes to
many petabytes.

Long running jobs? Batch jobs (typically
off-shift), with many
transactions between
commits.

Extract, transformation
and load into data
warehouses. Could also
include large reports and
data mining activity.

Availability requirements. Very high 7x24x365. Moderate to high.

110 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

In this chapter, we focus primarily on DB2-related performance drivers that
impact isolated OLTP and BI environments (not mixed workloads) as follows:

� Identify the key performance drivers
� Discuss their performance considerations
� Suggest best practices for achieving superior performance with them
� Identify monitoring facilities to track their performance

We have categorized these key performance drivers as follows:

� Application design considerations
� System design considerations

3.3 Application design considerations
Any OLTP or BI application designed without performance in mind can have a
major negative impact on overall system performance, which cannot be easily
overcome with even the most optimal system tuning. For example, inefficient
SQL and inappropriate locking strategies can result in suboptimal access path
selection by the DB2 optimizer and significant locking contention, thereby
increasing end-user response times and reducing throughput.

This subsection covers application performance considerations as they relate to:

� Table design
� Index design
� Table space design
� Writing efficient SQL
� Concurrency

3.3.1 Table design
DB2 supports four types of tables:

� “Regular” tables
� Materialized Query Tables (MQTs), formerly known as Automatic Summary

Tables (ASTs)
� Multi-dimensional Clustering (MDC) tables
� Declared Global Temporary (DGTT) tables

Table design involves considering the following factors:

� Type of table
� Normalization
� Data types
� VALUE COMPRESSION and COMPRESS SYSTEM DEFAULT options
� Referential constraints

 Chapter 3. Application design and system performance considerations 111

� Informational constraints
� MQT/AST design considerations
� MDC design considerations
� Declared Global Temporary Tables design considerations

We describe these considerations in the following subsections.

Refer to DB2 UDB Administration Guide: Planning, SC09-4822, for a more
detailed discussion of table, index, and table space design considerations.

Type of table
While there are four types of tables, they are not all competing choices. The
decisions to be made are as follows:

1. Should a “regular” table be used, or an MDC?

2. Should an MQT/AST be created or not?

3. Should a Declared Global Temporary Table (DGTT) or a “regular” table be
used for intermediate results sets?

These choices are addressed here.

“Regular” table or MDC
The nature of the application workload determines whether or not an MDC is an
appropriate choice for a table.

Certain kinds of applications, such as data warehousing involving “fact” tables
and many “dimension” indexes, issue queries that retrieve data from the fact
table along multiple “dimensions”.

� With “regular” tables, which support only a single clustering index, retrieval of
large numbers of rows via a non-clustered index may be quite inefficient
because of the need for multiple I/Os against the fact table. This is of
particular concern with fact tables and multiple dimension indexes in data
warehousing applications. In addition, a regular table’s degree of clustering
tends to degrade over time as rows get added and deleted, necessitating a
table reorganization to reestablish clustering.

� With MDCs, multiple clustering indexes corresponding to the dimensions may
be defined on the fact table, and data is stored in a way that the degree of
clustering does not degrade over time. This has significant performance
benefits with data warehousing applications implementing fact tables and
multiple dimensions. However, MDCs tend to consume additional disk storage
to provide this benefit.

112 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Performance considerations related to MDC design are covered in the IDUG
May 2003 presentation, “New Data Clustering Techniques: Multidimensional
Clustering” by Leslie Cranston.

MDC tables are therefore appropriate when an application requires data to be
clustered along multiple keys for superior query performance, and the added
costs of disk storage are acceptable.

MQT/AST to be created or not
Here again, the nature of the application workload determines whether or not an
MQT/AST should be created.

In a data warehouse environment, users often issue queries repetitively against
large volumes of data with minor variations in a query’s predicates. For example:

� Query A might request the number of items belonging to a consumer
electronics product group sold in each month of the previous year for the
western region.

� Query B may request the same kind of information for only the month of
December for all regions in the USA.

� Query C might request monthly information for laptops for all regions in the
USA over the past six months.

The results of these queries are almost always expressed as summaries or
aggregates. The base data could easily involve millions of transactions stored in
one or more tables, which would need to be scanned repeatedly to answer these
queries. Query performance likely to be poor in such cases.

MQTs/ASTs provide a look-aside capability for such queries, which can result in
orders of magnitude improvement in performance. When appropriate
MQTs/ASTs are defined on base tables, queries that access the base tables are
automatically rewritten (if appropriate) by the DB2 optimizer to access the
MQTs/ASTs instead, in order to achieve superior query performance.

However, the cost of MQTs/ASTs are disk space, transaction overheads for
refresh immediate MQTS/ASTs since they are updated synchronously,
administration costs for loads, deferred refreshes, runstats, backups, and so on.

Performance considerations for MQTs/ASTs are discussed in “MQT/AST design
considerations” on page 128, and the IBM Redbook DB2 UDB’s High Function
Business Intelligence in e-business, SG24-6546.

Attention: MQTs do not require an aggregate to be defined in order to be
beneficial.

 Chapter 3. Application design and system performance considerations 113

MQTs/ASTs are therefore appropriate when a very large number of rows need to
be scanned repeatedly to generate aggregates or summaries, and the added
overheads of disk space and administration costs are acceptable.

DGTT or “regular” table for intermediate results sets
Certain kinds of applications create tables to process large amounts of data and
drop those tables once the application has finished manipulating the data;
DGTTs offer a viable alternative to “regular” tables for storing these intermediate
results sets, for the following reasons:

� DGTTs are not recorded in the system catalog, are not persistent, are created
in a user temporary table space, and are dropped at the end of the session.
Therefore, they do not need to be managed like “regular” tables used for
intermediate result sets, which need to be pruned and proliferation minimized
when large numbers of such tables may be required.

� Unlike “regular” tables, there is no locking of DGTT rows, no catalog
contention because there is no entry in the system catalog, and if the NOT
LOGGED option is chosen, then neither the DGTT nor its contents are
logged—all of which is probably acceptable for most intermediate result set
processing. Setting the NOT LOGGED option not only has a positive impact on
the performance of this application, but also on overall system performance,
since it minimizes the amount of logging and contention for log buffers.

For further details about DGTTs, refer to DB2 UDB Application Development
Guide: Programming Client Applications, SC09-4826.

DGTTs are therefore appropriate for applications that temporarily create tables
for storing and manipulating large volumes of data, and then drop them when
they are finished with it. Such applications tend to be more BI-oriented.

Normalization
The objective of normalization is to minimize redundancies in the data stored in
different tables. Normalization improves the integrity of the data since SQL
updates need to be applied to only a single table. The disadvantage of
normalization is that query performance may deteriorate if a join is required to
access data stored in different tables.

Note: Here again, it is very unlikely that OLTP applications perform operations
that involve the creation, storing, and manipulation of intermediate results sets
that are discarded at the end of the application. Therefore, DGTTs may not be
appropriate for “typical” OLTP environments.

114 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

There are five normal forms, but a discussion of them is beyond the scope of this
redbook. Refer to An Introduction to Database Systems, by Chris Date,
ISBN 0-321-197844-4, for a detailed discussion of normalization.

At least Third Normal form is strongly recommended for OLTP applications since
data integrity requirements are stringent, and joins involving large numbers of
rows are minimal.

Data warehousing applications, on the other hand, are predominantly read only,
and therefore benefit from denormalization, which involves duplicating data in
one or more tables to minimize or eliminate joins. In such cases, adequate
controls must be put in place to ensure that the duplicated data is always
consistent in all tables to avoid data integrity issues.

Data types
DB2 supports a wide range of data types for the columns in a table. Data types
can be categorized as:

� DB2-Supplied Data Types - these can be Numeric, String (Binary, Single
Byte, Double Byte), or Date and Time.

� User Defined Data Types- these can be User Defined distinct Types (UDTs),
User Defined Structured Types, or User Defined Reference Types.

For more information on data types, refer to DB2 UDB Administration Guide:
Implementation, SC09-4820.

Performance considerations
Data types should be defined to minimize disk storage consumption, enhance
domain integrity1, and avoid any unnecessary processing such as data type
transformations.

Best practices
We recommend the following data types within the domain constraints required
(what values need to be supported) by the application:

Attention: From a performance perspective, the use of User Defined Data
Types should not impact response times. For example, User Defined
distinct Types share the same code that is used by built-in data types to
access built-in functions, indexes, and other database objects.

1 DB2 automatically ensures a degree of integrity for values in a column based on the data type; for
example, defining a data type as SMALLINT or INTEGER ensures that no alphabetic characters can
be stored there, and defining a DATE data type ensures that date entered is always valid.

 Chapter 3. Application design and system performance considerations 115

1. Use SMALLINT rather than INTEGER, and INTEGER rather than BIGINT
where appropriate.

2. Use DATE or TIME rather than TIMESTAMP.

3. Use the DATE and TIME data types rather than CHAR.

4. Use NOT NULL for columns wherever possible.

5. Use CHAR rather than VARCHAR for any narrow columns (those that are less
than 50 characters wide).

6. Choose VARCHAR instead of LONG VARCHAR when the row size is less
than 32 K.

7. Use FLOAT rather than DECIMAL for columns if exact precision is not
required.

8. Use IDENTITY columns, where appropriate.

VALUE COMPRESSION and COMPRESS SYSTEM DEFAULT
These options in the CREATE TABLE statement allow null and system default
values to be compressed using a new row format.

� COMPRESS SYSTEM DEFAULT is specified at a column level, and directs DB2 to
store default values with minimal space. Data types that support COMPRESS
SYSTEM DEFAULT include all numerical type columns, fixed-length character,
and fixed-length graphic string data types. This option can only be used if
VALUE COMPRESSION is also specified.

� VALUE COMPRESSION is specified at the table level, and directs DB2 to store
NULL and zero length data values for BLOB, CLOB, DBCLOB, LONG
VARCHAR, and LONG VARGRAPHIC using minimal space in a new row
format. Each null value is stored without using an additional byte.

When this option is combined with the COMPRESS SYSTEM DEFAULT option, DB2
uses a new row format that allows system default values for the column to be
stored more efficiently. Minimal disk space is used if the inserted or updated
value is equal to the system default value for the data type of the column. The
default value will not be stored on disk.

For further details on these new options, refer to DB2 UDB Administration Guide:
Implementation, SC09-4820 and DB2 UDB SQL Reference Volume 2,
SC09-4845.

The trade-off is between saving disk space and increasing CPU consumption.

Note: Columns and rows remain compressed in the buffer pool, resulting in
the ability to store more pages in the buffer pool. The performance of table
scans are also improved with compression.

116 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Consider the following recommendations:

� Use VALUE COMPRESSION if NULL and zero length values are common, or if
column level compression (as specified by COMPRESS SYSTEM DEFAULT) is
required.

� Use COMPRESS SYSTEM DEFAULT for columns that are mainly zeros or blank.

BI environments tend to require large volumes of data, and therefore benefit from
data compression, particularly the performance of table scans, which occur more
frequently in such environments. The CPU overhead tends to be a small
percentage of the overall cost of a BI query.

OLTP environments should benefit from data compression as well, but the
performance penalty of CPU is likely to be significantly higher per transaction
that in the case of a BI query.

Referential constraints
Referential constraints are constraints placed on the data to enforce referential
integrity (RI). RI is implemented by placing foreign keys in the child relationship of
a parent-child relationship. Tables that are children of other tables can also be
parents of other child tables.

While the primary function of referential constraints is to enforce RI, the DB2
optimizer is sometimes able to exploit the knowledge of RI between tables to
optimize access paths of queries accessing parent and child tables.

For further details on referential constraints, refer to DB2 UDB Administration
Guide: Implementation, SC09-4820.

OLTP environments should implement RI from a data integrity point of view, and
indirectly benefit from the DB2 optimizer’s ability to exploit RI relationships for
query optimization.

BI environments tend to be predominantly read only and have their data loaded
through a rigorous extract, transform, and load (ETL) process. They also tend to
be significantly denormalized. Therefore, referential constraints may not be
appropriate for such BI environments. Query optimization can still be achieved in
such cases through the definition of informational constraints, as described in
“Informational constraints”.

Informational constraints
Informational constraints are essentially hints to the DB2 optimizer to help it
determine the optimal access path for a query. Informational constraints are
implemented as check constraints or referential constraints, and are defined in
the CREATE/ALTER TABLE statement with the NOT ENFORCED option.

 Chapter 3. Application design and system performance considerations 117

Informational constraints are not enforced by the database manager during
updates to a table; they are used by the DB2 optimizer for potential query rewrite.

Informational constraints can be used to improve the performance of queries with
UNION ALL, as well as joins. It helps the optimizer rewrite outer joins as inner
joins, and provides better estimates of cardinality.

For further details on informational constraints, refer to DB2 UDB Administration
Guide: Implementation, SC09-4820.

BI environments can benefit significantly from the definition of informational
constraints since queries tend to be complex, volumes of data very large, and
data integrity tends to be enforced through rigorous ETL processes.

OLTP environments are generally inappropriate for informational constraints
since OLTP queries are very simple, and data integrity issues are paramount;
referential constraints should be implemented in such environments. The
exception could be for existing OLTP applications that have implemented
user-defined referential integrity, and could benefit from informational constraints
for query optimization.

3.3.2 MDC design considerations
An MDC is a table type that allows data to be independently clustered along
more than one key2, unlike “regular” tables, which can have their data clustered
only according to a single key. Therefore, scans of an MDC table via any of the
dimension indexes are equally efficient, unlike a regular table where only a scan
of the data via the clustering index is likely to be efficient.

Additionally with MDC tables, clustering of data according to each key is
guaranteed, therefore eliminating the need for a reorg to reestablish clustering.

Note: The DB2 optimizer can be directed to ignore an informational constraint
by specifying the DISABLE QUERY OPTIMIZATION option in the CREATE/ALTER
TABLE statement.

Important: When using informational constraints, ensure that an appropriate
process is in place to ensure the integrity of the data.

2 MDCs have wide applicability in “fact” tables in star schema implementations, and it is therefore
quite common to see the word “dimensions” used instead of keys.

118 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Unlike “regular” tables, an MDC table has multiple indexes associated with it
when it is created. There is one block index per dimension, and one composite
block index.

Also created is a block map (not shown in Figure 3-1) which is used to track the
status of each block in the MDC table.

Figure 3-1 highlights the differences between clustering in a regular table and
multi-dimensional clustering in an MDC table.

Figure 3-1 Traditional RID clustering and Multidimensional clustering

DB2 manages MDC tables by block according to dimensions instead of RIDs as
implemented in clustering indexes, as shown in Figure 3-2 on page 120.

Note: This does not mean that a reorg is no longer necessary for MDCs.
reorg may still be required against an MDC table to consolidate row overflows
and unused space in extents due to deletions.

Note: A block is the smallest allocation unit of an MDC table. It is equivalent to
an extent in “regular” tables.

Y e a r

P ro d lin e C o u n try

Y e a r

U S
X

9 9

P ro d lin e C o u n try

C a n
Z

0 0

U S
Y

9 9

C a n
X

9 9

U S
Y
0 0

P r io r to M D C
A ll in d e xe s R E C O R D -b a s e d
C lu s te rin g in o n e d im e n s io n o n ly
C lu s te rin g N O T g u a ra n te e d (d e g ra d e s o n ce
p a g e f re e s p a c e is e xh a u s te d)

"B lo ck in d e x e s " a re ju s t lik e n o rm a l
in d e x e s , e xc e p t th e y h a ve p o in te rs to
b lo ck s in s te a d o f in d iv id u a l re co rd s .

A b lo c k is a g ro u p o f co n s e cu tive
p a g e s w ith th e sa m e k e y va lu e s in a ll
d im e n s io n s .

A ll re c o rd s in th is b lo c k
a re fro m co u n try C a n a d a ,
p ro d u c t lin e Z , a n d th e
y e a r 2 0 0 0 .

W ith M D C
Ta b le s m a n a g e d b y B L O C K a c c o rd in g to d e fin e d c lu s te r in g
d im e n s io n s
C lu s te r in g g u a ra n te e d !

E a c h in s e rt tra n s p a re n tly p la c e s a ro w in a n e x is tin g b lo c k w h ic h
s a t is f ie s a ll d im e n s io n s , o r c re a te s a n e w b lo c k

D im e n s io n in d e xe s a n d B L O C K -b a s e d
R e s u lts in m u c h s m a lle r in d e x e s
R E C O R D -b a s e d in d e x e s a ls o s u p p o rte d

Q u e rie s in c lu s te r in g d im e n s io n s o n ly d o I/O s a b so lu te ly n e ce s sa ry
fo r s e le c te d d a ta

M u lti-D im e n s io n a l C lu s te r in g (M D C)M u lt i-D im e n s io n a l C lu s te r in g (M D C)

 Chapter 3. Application design and system performance considerations 119

Figure 3-2 Row index vis-a-vis MDC block index

Figure 3-3 on page 121 presents a conceptual diagram of multi-dimensional
clustering along three dimensions: region, year, and color.

Row Indexes, Block Indexes
Row Indexes -

1 index entry per row

Block Indexes -
1 index entry per block

= Row

120 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-3 MDC dimensions

Each block contains only rows that have the same unique combination of
dimension values. The set of blocks that have same unique combination of
dimension values is called a cell. A cell may consist of one or more blocks in the
MDC table, as shown in Figure 3-4 on page 122.

With MDC tables, clustering is guaranteed. If an existing block satisfies the
unique combination of dimension values, the row is inserted into that block if
there is sufficient space. If there is insufficient space in the existing block(s), or if
no block exists with the unique combination of dimension values, a new block is
created to store the row.

2002,
USA,
blue

2002,
Brazil,
yellow

2002,
Brazil,

blue

2002,
USA,

yellow

2001,
Brazil,
yellow

2002,
Brazil,
yellow

2001,
USA,

yellow2002,
USA,

yellow

year
dimension

color
dimension

country
dimension

MDC table clustered
on 3 dimensions

 Chapter 3. Application design and system performance considerations 121

Figure 3-4 The cell for dimension values (2002, USA, yellow)

For further details on the structure of MDC tables and performance
considerations, refer to the IDUG May 2003 presentation “New Data Clustering
Techniques: Multidimensional Clustering” by Leslie Cranston.

Performance considerations
The performance of an MDC table is greatly dependent upon the proper choice
of dimensions, and the block (extent) size of the table space for the given data
and application workload.

A poor choice of dimensions and extent size can result in unacceptable disk
storage utilization and poor query access performance, as well as load utility
processing.

Cell for
(2002,
USA,
yellow)

Each cell
contains
one or more
blocks

2002, 2002,
USA, USA,
blueblue

2002, 2002,
Brazil, Brazil,
yellowyellow

2002, 2002,
Brazil, Brazil,
blueblue

2002, 2002,
USA, USA,

yellowyellow

1998,
Canada,
yellow

2002, 2002,
Brazil, Brazil,
yellowyellow

1998,
Mexico,
yellow2002, 2002,

USA, USA,
yellowyellow

year
dimension

color
dimension

2001,
USA,

yellow

2001,
Brazil,
yellow

country
dimension

122 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Choosing dimensions
The first step is to identify the queries in the in existing or planned workloads that
can benefit from block-level clustering.

� For existing applications, the workload may be captured from the dynamic
SQL snapshot and the SQL statement Event Monitor. The DB2 Query
Patroller or other third party tools may also assist with such a determination.

� For future applications, this information will have to be obtained from
requirements gathering.

Choosing the extent size
Extents are discussed in detail in “Extent size for the table space” on page 150.
Extent size is related to the concept of cell density, which is the percentage of
space occupied by rows in a cell. Since an extent only contains rows with the
same unique combination of dimension values, significant disk space could be
wasted if dimension cardinalities are very high; the worst case scenario is a
dimension with unique values which would result in an extent per row.

The ideal MDC table is the one where every cell has just enough rows to exactly
fill one extent. This can be difficult to achieve. The objective of this section is to
outline a set of steps to get as close to the ideal MDC table as possible.

Defining small extent sizes can increase cell density, but increase the number of
extents per cell resulting in more I/O operations, and potentially poorer
performance when retrieving rows from this cell. However, unless the number of
extents per cell is excessive, performance should be acceptable. If every cell
occupies more than one extent, then it can be considered to be excessive.

Sometimes, due to data skew, some cells will occupy a large number of extents
while others will occupy a very small percentage of the extent. In such cases, it
would signal a need for a better choice of dimension keys. Currently, the only way
to determine the number of extents per cell requires the DBA to issue
appropriate SQL queries or use db2dart.

Performance might be improved if the number of blocks could be reduced by
consolidation. Unless the number of extents per cell is excessive, this situation is
not considered a problem.

Note: The extent size is associated with a table space, and therefore applies
to all of the dimension block indexes as well as the composite block index.
This makes the goal of high cell density for every dimension block index and
the composite block index very difficult to achieve.

 Chapter 3. Application design and system performance considerations 123

Best practices
We recommend the following best practices to achieve superior performance
with MDCs:

1. Choose dimension column(s) that are good candidates for clustering as
follows:

– Columns used in high priority complex queries

– Columns used in range, equality, and IN predicates such as:

shipdate>’2002-05-14’, shipdate=’2002-05-14’, year(shipdate) in
(1999, 2001, 2002)

– Columns that define roll-in or roll-out of data such as:

delete from table where year(shipdate) = ‘1999’

– Columns with coarse granularity

– Columns referenced in a GROUP BY clause

– Columns referenced in an ORDER BY clause

– Foreign key columns in “fact” table of a star schema database

– Combinations of the above

2. If expressions are used to cluster data with generated columns, then the
expression needs to be monotonic.

Monotonic means that an increasing range of values on the base column
corresponds to a range of values on the generated column that is never
decreasing. For example:

if (A > B) then expr(A) >= expr(B) and
if (A < B) then expr(A) <= expr(B)

In other words, as “A” increases in value, the expression based upon ”A” also
increases or remains constant.

Examples of monotonic operations include:

A + B
A * B
integer(A).

Note: The challenge is to find the right balance between sparse
blocks/extents and minimizing the average number of extents per cell as the
table grows to meet future requirements.

Note: Avoid columns that are updated frequently

124 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Examples of non-monotonic operations are:

A - B
month(A)
day(A)

The expression month(A) is non-monotonic because as “A” increases, the
value of the expression fluctuates as follows:

month(20010531) equals 05
month(20021031) equals 10
month(20020115) equals 01

So, as the date value increases, the value of the month fluctuates.

3. Do not choose too many dimensions without determining cell density; avoid
too many sparse extents/blocks.

4. Once the dimensions have been selected, order them to satisfy the
performance of high priority queries.

When a MDC table is created, a composite block index is automatically
created in addition to the dimension block indexes. While this index is used to
insert records into the table, it can also be used like any other multi-column
index as an access path for a query. Therefore, an appropriate ordering of the
dimension columns can enhance the performance of certain types of queries
with ORDER BY clauses and range predicates.

5. If disk space utilization of an MDC table is unacceptable or I/O performance is
suffering because of too many extents in a cell, consider changing the
following:

– Extent size
– Granularity of one or more dimensions
– Number candidate dimensions
– Different combination of dimensions

MDCs are particularly suited for BI environments which involve star schemas,
and queries that retrieve large numbers of rows along multiple dimensions. We
strongly recommend that anyone considering a migration to an MDC table
carefully model space utilization and cell utilization for candidate dimension keys,

Note: If the SQL compiler cannot determine whether or not an expression
is monotonic, the compiler assumes that the expression is not monotonic.

Attention: Each of these changes requires the MDC table to be dropped
and recreated. It is therefore vital to be very diligent during the design
process to avoid having to make costly and time-consuming changes later.

 Chapter 3. Application design and system performance considerations 125

as well as the performance of high priority user queries, before committing to the
selection of the dimension keys and extent size.

Monitoring performance metrics
Two elements to monitor with MDCs are as follows:

1. Space utilization

2. Efficacy of the extent size

Space utilization
One approach to determining whether the space utilization of an MDC table is
acceptable is to compare the MDC storage requirement to that required for a
non-MDC table.

For the existing MDC table, we recommend the following:

1. The table should be reorganized or freshly loaded.

2. Execute runstats to update table statistics.

3. Review the FPAGES (total number of pages in SYSCAT.TABLES) utilization
statistic for the table to accurately determine the current number of pages
allocated and to provide a baseline for evaluating dimension choices.

The equivalent space consumption for a non-MDC table requires using the
formulae described in DB2 UDB Administration Guide: Planning, SC09-4822.

A significant (about 25%) difference in space utilization between the MDC table
and an equivalent non-MDC table points to a poor selection of dimension keys,
which results in unused space due to sparse extents/blocks. This may require
changing the dimension keys as well as the extent size, which requires an
existing MDC table to be dropped and recreated.

Efficacy of the extent size
The following steps can help determine the efficacy of an MDC table’s extent
size:

1. Determine the number of cells
2. Determine the space occupied per cell
3. Determine cell utilization

Note: Accommodating for future growth in the size of an MDC table may
manifest transitory sparse extents/blocks, and should be evaluated carefully
before initiating changes.

126 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Determine the number of cells
Example 3-1 provides the exact number of cells for an existing non-MDC table
and a candidate dimension set. The number of cells will be equal to the number
of unique combinations of the dimension attributes.

Example 3-1 Counting the number of cells

WITH cell_table as (
SELECT DISTINCT dimension_col1, dimension_col2, ... , dimension_colN
FROM table)

SELECT COUNT(*) as cell_count
FROM cell_table

For a planned MDC table, the upper bound for the number of cells can be
determined by computing the Cartesian product of the expected number of
unique values in each dimension column.

Determine the space occupied per cell
To determine the space needed to store each cell, we need to determine the
number of rows in the table (SELECT COUNT(*) FROM table_name for an existing
table; otherwise, use your best guess), and the extent size in bytes (SELECT
(PAGESIZE * EXTENTSIZE) FROM SYSCAT.TABLESPACES WHERE TBSPACE LIKE
‘tablespace_name%’).

Example 3-2 provides the SQL to compute the average (RpC), minimum (MinRpC)
and maximum (MaxRpC) rows per cell for the combination of dimensions of an
existing MDC table.

Example 3-2 SQL to examine rows per cell

WITH cell_table (dimension_col1, dimension_col2, ... , dimension_colN, RpC)
as (SELECT DISTINCT dimension_col1, dimension_col2, ... , dimension_colN,

COUNT(*) FROM table
GROUP BY dimension_col1, dimension_col2, ... , dimension_colN)

SELECT avg(RpC) as RpC, min(RpC) as MinRpC, max(RpC) as maxRpC
FROM cell_table

The space occupied by rows in a cell (SpC) can be computed as follows:

SpC = RpC x (average row size)

Note: This estimate will be inaccurate if there are correlations between the
dimension columns.

 Chapter 3. Application design and system performance considerations 127

Determine cell utilization
The space utilization of a cell can now be computed as follows:

Cell utilization = SpC / (extent size in bytes)

This ratio provides a measure of the efficacy of the extent size for the current set
of dimensions.

� A cell utilization value of 1.0 indicates that one cell will fully occupy one
extent.

This is the optimal value, and the candidate dimension set appears
appropriate, assuming end-user queries will benefit from these dimensions.
Compare the space required by the MDC table against the baseline from the
non-MDC table.

� A really large utilization value (say, 10 or higher) indicates that multiple
extents are required to store the rows in a cell. Performance of I/O operations
may be improved by increasing the size of the extent, since this would result
in fewer I/O operations.

As cell utilization gets higher, performance of queries may be improved by
adding additional dimension keys.

� An extremely small utilization (0.1 or less) indicates that a great deal of
storage space allocated to the table will be unused.

An MDC table with such cell utilization could require ten times the space
consumed by a non-MDC table. This may require changing the dimension
keys as well as the extent size, which requires an existing MDC table to be
dropped and recreated.

3.3.3 MQT/AST design considerations
An MQT/AST is a table whose structure and contents are based on an SQL
query. The SQL query used in defining the MQT/AST may access one or more
tables.

MQTs were designed to improve the performance of queries in a data
warehousing environment where users often issue queries repetitively against
large volumes of data with minor variations in a query’s predicates, as discussed
in “MQT/AST to be created or not” on page 113. As mentioned earlier, MQTs do
not require an aggregate function in its definition to be beneficial.

MQTs/ASTs provide a look-aside capability for such queries that can result in
orders of magnitude improvement in performance, as shown in Figure 3-5 on
page 129. When appropriate, MQTs/ASTs are defined on base tables, and
queries that access the base tables are automatically rewritten (if appropriate) by

128 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

the DB2 optimizer to access the MQTs/ASTs instead, in order to achieve
superior query performance.

Figure 3-5 MQT/AST look-aside concept

MQTs/ASTs exploitation involves the following:

1. Have a DBA pre-compute an aggregate query, and materialize the results into
a table. This summary table would contain a superset of the information that
could answer a number of queries that had minor variations.

Note: Prior to DB2 UDB V8, the term Automatic Summary Tables (ASTs) was
used for these look-aside tables in IBM product documentation. While it was
possible to define non-aggregate ASTs in DB2 UDB V7, the restriction was
that such an AST could only be defined on single base table.

In DB2 UDB V8, this restriction was removed, and since these look-aside
tables can include other than summary data, the more generalized term
Materialized Query Tables (MQT) was introduced. ASTs can be considered to
be a subset of the generalized MQT which specifically includes summary data.

DB2 Optimizer

 SQL Queries
Against Base Tables

Base Table
T2

MQT/AST
T1,T2,..Tn

Base Table
Tn

Base Table
T1

Immediate
Refresh

Deferred
Refresh

with
query

rewrite

no
query

rewrite

OR

 Chapter 3. Application design and system performance considerations 129

2. Take advantage of the DB2 optimizer‘s automatically rewrite capability to
target the MQTs/ASTs instead (if appropriate) in order to satisfy the original
query.

Since the MQT/AST often contains precomputed summaries and/or a filtered
subset of the data, it would tend to be much smaller in size than the base tables
from which it was derived. When a user query accessing the base table is
automatically rewritten by the DB2 optimizer to access the materialized view
instead, then significant performance gains can be achieved.

There are two approaches to refresh MQTs/ASTs, deferred or immediate, as
shown in Figure 3-5 on page 129:

1. In the deferred refresh approach, the contents of the MQT/AST are not kept in
sync automatically with the base tables when they are updated. In such
cases, there may be a latency between the contents of the MQT/AST and the
contents in the base tables.

Figure 3-6 on page 131 provides an overview of the deferred refresh
mechanism.

Important: MQTs/AST’s functionality is somewhat similar to the role of a DB2
index ,which provides an efficient access path that the query user is typically
unaware of. However, unlike an index, a user may directly query the
MQT/AST, but this is not generally recommended since it would detract from
the appeal of an MQT/AST being a black box that an administrator creates
and destroys as required to deliver superior query performance.

Adapting their queries to use an MQT/AST may not be a trivial exercise for the
user.

130 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-6 Deferred Refresh mechanism

REFRESH DEFERRED tables can be updated via the REFRESH table command with
either a full refresh (NOT INCREMENTAL) option, or an incremental
(INCREMENTAL) option.

For further details, refer to DB2 UDB’s High Function Business Intelligence in
e-business, SG24-6546.

2. In the immediate refresh approach, the contents of the MQT/AST are always
kept in sync with the base tables. An update to an underlying base table is
immediately reflected in the MQT/AST as part of the update processing.

Other users can see these changes after the unit of work has completed on a
commit. There is no latency between the contents of the MQT/AST and the
contents in the base tables.

Base Table
T2

Staging
Table
ST1

Base Table
Tn

Base Table
T1

Full Refresh

Incremental Refresh

MQT/AST
T1,T2,..Tn

synchronous
SQL

INSERTs
UPDATEs
DELETEs

+
LOAD

delta aggregate

 Chapter 3. Application design and system performance considerations 131

Table 3-2 summarizes some of the considerations relating to refresh immediate
and refresh deferred MQTs/ASTs.

Table 3-2 Refresh considerations

DB2 supports MQTs/ASTs that are either maintained by the system, which is the
default, or maintained by the user, as follows:

� MAINTAINED BY SYSTEM (default)

In this case, DB2 ensures that the MQTs/ASTs are updated when the base
tables on which they are created get updated. Such MQTs/ASTs may be
defined as either REFRESH IMMEDIATE, or REFRESH DEFERRED. If the REFRESH
DEFERRED option is chosen, then either the INCREMENTAL or NON INCREMENTAL
refresh option can be chosen during refresh.

� MAINTAINED BY USER

In this case, it is up to the user to maintain the MQTs/ASTs whenever
changes occur to the base tables. Such MQTs/ASTs must be defined with the
REFRESH DEFERRED option. Even though the REFRESH DEFERRED option is

Items REFRESH IMMEDIATE REFRESH DEFERRED

System maintained only System maintained User maintained only

Static SQL Optimization No optimization No optimization

Dynamic SQL Optimization Optimization Optimization

SQL INSERT,
UPDATE,
DELETE against
materialized
view

Not permitted Not permitted Permitted

REFRESH
TABLE
tablename

Permitted Permitted Not applicable

REFRESH
TABLE NOT
INCREMENTAL

Permitted Permitted Not applicable

REFRESH
TABLE
INCREMENTAL

Permitted Requires staging table Not applicable

Staging table Not applicable Same restrictions to
creating them, as those
applying to REFRESH
IMMEDIATE
materialized views

Not applicable

132 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

required, unlike MAINTAINED BY SYSTEM, the INCREMENTAL or NON INCREMENTAL
option does not apply to such MQTs/ASTs, since DB2 does not maintain such
MQTs/ASTs. Tw0 possible scenarios where such MQTs/ASTs could be
defined are as follows:

a. For efficiency reasons, when users are convinced that they can implement
MQTs/ASTs maintenance far more efficiently than the mechanisms used
by DB2 (for example, the user has high performance tools for rapid
extraction of data from base tables, and loading the extracted data into the
MQTs/ASTs).

b. For leveraging existing “user maintained” summaries, where the user
wants DB2 to automatically consider them for optimization for new ad hoc
queries being executed against the base tables.

Performance considerations
MQTs/ASTs have the potential to provide significant performance enhancements
to certain types of queries, and should be a key tuning option in every DBA’s
arsenal. Like any other table, defining appropriate indexes on MQTs/ASTs and
ensuring that their statistics are current will increase the likelihood of their being
used by the DB2 optimizer during query rewrite, and enhance the performance of
queries that use them.

However, MQTs/ASTs have certain overheads which should be carefully
considered when designing them. These include:

� Disk space, due to the MQTs/ASTs and associated indexes, as well as
staging tables.

� Locking contention on the MQTs/ASTs during a refresh.

� With deferred refresh, the MQT/AST is offline while the REFRESH TABLE is
executing.

� The same applies to the staging table if one exists. Update activity against
base tables may be impacted during the refresh window.

� With immediate refresh, there is contention on the MQTs/ASTs when
aggregation is involved due to SQL insert, update, and delete activity on the
base table by multiple transactions.

� Logging overhead during refresh of very large tables.

� Logging associated with staging tables.

� Response time overhead on SQL updating the base tables when immediate
refresh and staging tables are involved, because of the synchronous nature of
this operation.

 Chapter 3. Application design and system performance considerations 133

Best practices
We recommend the following best practices to achieve superior performance
with MQTs/ASTs:

1. The main objective should be to minimize the number of MQTs/ASTs required
by defining sufficiently granular REFRESH IMMEDIATE and REFRESH DEFERRED
MQTs/ASTs that deliver the desired performance, while minimizing their
overheads.

Figure 3-7 on page 135 provides an overview of the steps involved in
designing REFRESH DEFERRED MQTs/ASTs.

134 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-7 Overview of the design of REFRESH DEFERRED MQTs/ASTs

LOAD production data

S3

Reset CHECK PENDING NO ACCESS state if appropriate, execute RUNSTATS, and EXPLAIN the query

Collect all relevant queries, and prioritize them by importance

Is the MV used by the query?
Yes

End of queries?

No

Existing MV suitable?

Generalize local predicates to GROUP BY and design the materialized view (MV)

Are the performance gains satisfactory?

No

No

Consider each query in turn

Size acceptable?
No

Yes

Reduce MV size through splits or
more predicates

No

Modify the MV to suit

Yes

Yes

Create a new MV

Review matching criteria, modify query as required and retry query

Consolidate MV's with only few matching queries, keeping size in mind

Yes
Existing MV modifiable to suit?

No

Create indexes, update MV's with PRODUCTION statistics (MV NOT populated), and EXPLAIN all the queries

Review MV design
issues and reiterate

Yes

Queries still use the MV's?No

Yes

Execute queries and measure performance with and without MV optimization, and extrapolate performance to production data

Create & populate "miniature" base tables, and MV's with SAMPLE data, and execute RUNSTATS

Cost issue -- may or
may not be a problem.
Further investigation

needed.

S1

S9

S2

S5

S6

S7

S8

S4

 Chapter 3. Application design and system performance considerations 135

2. When an MQT/AST has many tables and columns in it, it is sometimes
referred to as a “wide” MQT/AST. Such an MQT/AST allows a larger portion of
a user query to be matched, and hence provides better performance.
However, when the query has fewer tables in it than in the MQT/AST, we need
to have declarative or informational referential integrity constraints defined
between certain tables in order for DB2 to use the MQT/AST for the query as
discussed in “Informational constraints” on page 117. Note that a potential
disadvantage of “wide” MQT/AST is that they not only tend to consume more
disk space, but may also not be chosen for optimization because of the
increased costs of accessing them.

3. When an MQT/AST has fewer columns and/or tables, it is sometimes referred
to as a “thin” MQT/AST. In such cases, we reduce space consumption at the
cost of performing joins during the execution of the query. For example, we
may want to only store aggregate information from a fact table (in a star
schema) in the MQT/AST, and pick up dimension information from the
dimension tables through a join. Note that in order for DB2 to use such a
MQT/AST, the join columns to the dimension tables must be defined in the
MQT/AST. Note also that referential integrity constraints requirements do not
apply to “thin” MQTs/ASTs.

4. Incremental refresh should be used to reduce the duration of the refresh
process. For the duration of a full refresh, DB2 takes a share lock on the base
tables, and a z-lock on the MQT/AST. Depending upon the size of the base
tables, this process can take a long time. The base tables are not updateable
for this duration, and the MQT/AST is not be available for access or
optimization either. Incremental refresh can reduce the duration of the refresh
process, and increase the availability of the base tables and the materialized
view. Incremental refresh should be considered when one or more of the
following conditions exist:

– The volume of updates to the base tables relative to size of the base tables
is small.

– The duration of read only access to the base tables during a full refresh is
unacceptable.

– The duration of unavailability of the MQT/AST during a full refresh is
unacceptable.

For further details on all these recommendations, refer to DB2 UDB’s High
Function Business Intelligence in e-business, SG24-6546.

Note: DB2 plans to provide an MQT Design Advisor wizard in the future to
assist DBAs in defining effective MQTs/ASTs for their environments.

136 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

MQTs/ASTs are particularly suited for BI environments that involve queries that
retrieve large numbers of rows and compute aggregations/summaries of these
rows.

Monitoring performance metrics
A useful MQT/AST is one that is used in a query re-write by the DB2 optimizer
and delivers significant performance benefits.

DB2 Explain identifies whether a particular query is rewritten by the DB2
optimizer to exploit and MQT/AST. Whether or not this actually results in an
improvement in query performance can only be ascertained by actually
measuring the query’s performance with and without MQT/AST access.

3.3.4 Index design
Indexes provide the following functionality:

� Enforcement of the uniqueness constraints on one or more columns

� Efficient access to data in underlying tables when only a subset of the data is
required, or when it is faster than scanning the entire table.

Indexes can therefore be used to:

� Ensure uniqueness
� Eliminate sorts
� Avoid table scans where possible
� Provide ordering
� Facilitate data clustering for more efficient access
� Speed up table joins

Note: The DB2 optimizer may choose to ignore the MQT/AST for a query
rewrite of a user query for a number of reasons, including:

� State of the MQT/AST, such as CHECK PENDING
� QUERY OPTIMIZATION LEVEL
� CURRENT REFRESH AGE special register value
� Matching criteria for query rewrite being inhibited
� Costs of using the MQT/AST to satisfy the query being suboptimal

There is no direct mechanism to determine the specific reason (suboptimal
cost, or matching inhibited, or other) why the DB2 optimizer chose not to
consider an MQT/AST for query rewrite.

 Chapter 3. Application design and system performance considerations 137

DB2 provides the Design Advisor wizard to recommend indexes for a specific
query or workload. It can assist the DBA in determining indexes on a table that
are not being used.

DB2 UDB Version 8 introduced a new type of index called a Type 2 index, which
offers significant concurrency and availability advantages over the previous index
structure (Type 1 index). For details on the structure and concurrency
characteristics of Type 2 indexes, refer to DB2 UDB Administration Guide:
Performance, SC09-4821.

Performance considerations
While indexes have the potential to significantly reduce a query’s access time,
the trade-off is in disk space utilization, slower updates (SQL INSERT, UPDATE,
and DELETEs), locking contention, and administration costs (runstats, reorg).
Each additional index potentially adds an alternative access path for a query for
the optimizer to consider, which increases the compilation time.

Best practices
We recommend the following best practices to achieve superior index
performance:

1. Use the Design Advisor, as described in 2.6.7, “Design Advisor” on page 93,
to find the best indexes for a specific query or for the set of queries that
defines a workload.

2. To eliminate some sorts and define primary keys and unique keys, wherever
possible.

3. Add INCLUDE columns to unique indexes to improve data retrieval
performance. Good candidates are columns that:

– Are accessed frequently and would therefore benefit from index-only
access

– Are not required to limit the range of index scans

– Do not affect the ordering or uniqueness of the index key

– Are updated infrequently

4. To access small tables efficiently, use indexes to optimize frequent queries to
tables with more than a few data pages. Create indexes on the following:

Attention: Type 1 and Type 2 indexes cannot coexist on the same table. All
indexes on a table must be of the same type.

Note: Type 2 indexes consume more space than Type 1 indexes.

138 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

– Any column you will use when joining tables

– Any column from which you will be searching for particular values on a
regular basis

5. To search efficiently, decide between ascending and descending ordering of
keys, depending on the order that will be used most often. Although the
values can be searched in reverse direction by specifying the ALLOW REVERSE
SCANS parameter in the CREATE INDEX statement, scans in the specified index
order perform slightly better than reverse scans.

6. To save index maintenance costs and space:

– Avoid creating indexes that are partial keys of other index keys on the
columns. For example, if there is an index on columns a, b, and c, then a
second index on columns a and b is not generally useful.

– Do not create indexes arbitrarily on all columns. Unnecessary indexes not
only use space, but also cause large prepare times. This is especially
important for complex queries, when an optimization class with dynamic
programming join enumeration is used. Unnecessary indexes also impact
update performance in OLTP environments.

7. To improve performance of delete and update operations on the parent table,
create indexes on foreign keys.

8. For fast sort operations, create indexes on columns that are frequently used
to sort the data.

9. To improve join performance with a multiple-column index, if you have more
than one choice for the first key column, use the column most often specified
with the “=” (equijoin) predicate, or the column with the greatest number of
distinct values as the first key.

10.To help keep newly inserted rows clustered according to an index, define a
clustering index. Clustering can significantly improve the performance of
operations such as prefetch and range scans. Only one clustering index is
allowed per table. A clustering index should also significantly reduce the
need for reorganizing the table.

Use the PCTFREE keyword when you define the index to specify how much free
space should be left on the page to allow inserts to be placed appropriately
on pages. You can also specify the pagefreespace MODIFIED BY clause of the
LOAD command.

11.To enable online index defragmentation, use the MINPCTUSED option when you
create indexes. MINPCTUSED specifies the threshold for the minimum amount of
used space on an index leaf page before an online index defragmentation is
attempted. This might reduce the need for reorganization at the cost of a
performance penalty during key deletions if these deletions physically remove
keys from the index page.

 Chapter 3. Application design and system performance considerations 139

12.The PCTFREE parameter in the CREATE INDEX statement specifies the
percentage of each index leaf page to leave as free space. For non-leaf
pages, it will choose the value you specify—unless the value that you specify
is less than 10%, in which case the 10% value is chosen.

Choose a smaller value for PCTFREE to save space and index I/Os in the
following cases:

– Index is never updated.

– Index entries are in ascending order and mostly high-key values are
inserted into the index.

– The index entries are in descending order and mostly low-key values are
inserted into the index.

A larger value for PCTFREE should be chosen if the index gets updated
frequently in order to avoid page splits, which reduce performance because
they result in index pages no longer being sequential or contiguous. This
has a negative impact on prefetching, and potentially space consumption
as well, depending upon the key values being inserted/updated.

13.Ensure that the number of index levels in the index tree are kept to a minimum
(less than 4, if possible); this is the NLEVELS column in the SYSCAT.INDEXES
catalog table. The number of levels in the index is affected by the number of
columns in the key and the page size of the table space in which it is created.

Use the following general rule for the typical number of indexes that you define
for a table. This number is based on the primary use of your database:

1. For OLTP environments with transactions that perform updates, have as few
indexes as possible without compromising performance (typically one or two
indexes per table).

2. Because tables in BI environments are very large, and the queries are
primarily read-only, multiple indexes (typically more than 5) should be defined
for optimal query performance.

3. For OLTP environments, you might create between two and five indexes.

For further details, refer to DB2 UDB Administration Guide: Performance,
SC09-4821.

Performance monitoring metrics
The efficacy of an index is ultimately measured by whether or not it is used in
queries whose performance it is meant to improve.

For dynamic SQL, DB2 Explain is the mechanism for determining whether or not
indexes are being used in queries.

140 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

For static SQL statements, package dependencies are recorded in the catalog
table SYSCAT.PACKAGEDEP, which contains a row for each dependency that
packages have on indexes, tables, views, triggers, functions, aliases, types, and
hierarchies.

3.3.5 Table space design
A table space is a database object that is used by DB2 to specify the physical
location of data in a database; it is the layer between the table metadata and the
actual container that holds table data. Tables and indexes reside within
tablespaces. A table space can contain one or many tables/indexes.

DB2 supports the following types of table spaces:

� REGULAR TABLE SPACE is used to store all data except for temporary tables.

REGULAR is the default table space type.

� LARGE TABLE SPACE is used to store long or LOB column data. It can also store
structured type columns or index data.

� SYSTEM TEMPORARY TABLE SPACE is used to store temporary data such as
intermediate tables during sort operations, reorganizing tables and indexes,
joining tables or creating indexes. A temporary table space is created
automatically when the database is created.

� USER TEMPORARY TABLE SPACE is used to store declared global temporary
tables (DGTT) for the life of a session.

These table spaces may be defined as using a System Managed Space (SMS)
or a Database Managed Space (DMS).

� In an SMS table space, the operating system’s file system manager allocates
and manages the space where the table is stored. The storage model
typically consists of many files, representing table objects, stored in the file
system space. The user decides on the location of the files, DB2 controls their
names, and the file system is responsible for managing them.

Each table has at least one SMS physical file associated with it.

In an SMS table space, a file is extended one page at a time as the object
grows, with extent-sized allocations like DMS table spaces. However, this can
be changed to multipage file allocation by executing the db2empfa utility to
enhance the performance of workloads with high volumes of inserts. The
informational database configuration parameter multipage_alloc is set to YES
to reflect the fact that the default behavior has been changed.

Note: multipage_alloc applies to all SMS table spaces in the database,
and once it has been enabled, it cannot be reversed.

 Chapter 3. Application design and system performance considerations 141

SMS space usage can be monitored through operating system commands.

� In a DMS table space, the database manager controls the storage space. The
storage model consists of a limited number of devices or files whose space is
managed by DB2. The DBA decides which devices and files to use, and DB2
manages the space on those devices and files. The table space is essentially
an implementation of a special purpose file system designed to best meet the
needs of the database manager.

A DMS table space containing user-defined tables and data can be defined
as:

– A regular table space to store any table data and optionally index data
– A large table space to store long field or LOB data or index data
– A temporary table space

For further details on SMS and DMS table spaces, refer to DB2 UDB
Administration Guide: Planning, SC09-4822.

Performance considerations
The following considerations apply to table space design:

� SMS or DMS table space?
� Number of tables per table space and table spaces per table?
� Choosing table space containers
� How many containers?
� Page size for the table space?
� Extent size for the table space?
� Prefetch size for the table space?

These considerations are discussed in the following subsections.

SMS or DMS table space
A brief review of the advantages and disadvantages of SMS and DMS table
spaces follows:

� SMS

Some of the advantages of SMS table spaces are:

– Space is not allocated by the system until it is required.

– Easier to manage; creating a table space requires less initial work,
because the containers do not have to be predefined.

Some of the disadvantages of SMS table spaces are:

– Containers cannot be added or deleted after the table space has been
created.

– Table space is considered full as soon as one of the containers is filled.

142 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

– Indexes cannot be assigned to a table space different from the one its
table is associated with, and therefore assigned to a different buffer pool.

� DMS

Some of the advantages of DMS table spaces are:

– The size of a table space can be increased (by adding or extending
containers) or decreased (by reducing the size of a container, or dropping
a container). The ALTER TABLESPACE statement is used to accomplish this
task. Existing data can be automatically rebalanced across the new set of
containers to retain optimal I/O efficiency.

– A table can be split across multiple table spaces, based on the type of data
being stored:

• Long field and LOB data
• Indexes
• Regular table data

This gives greater tuning flexibility such as spreading the data across
multiple disks and assigning different buffer pools for indexes, as well as
increasing/decreasing the amount of space available for a table.

Some of the disadvantages of DMS table spaces are:

– Container space has to be preallocated

– Administration is complex

– Incorrect allocation cannot be rectified as easily

Best practices
We recommend the following best practices for SMS/DMS design:

1. In general, a well-tuned set of user data DMS table spaces will outperform
SMS table spaces. Therefore, DMS is a good choice if performance is critical.

2. SMS table spaces are recommended when small-to-moderate growth is
expected, performance requirements are not as stringent, and there is a
dearth of DBA skills to administer the database. Small personal databases
are easiest to manage with SMS table spaces.

3. For large, growing tables where performance is critical, DMS table spaces
with multiple containers per table are preferred since they offer larger sizes
and greater tuning flexibility such as separation of data and indexes over
multiple physical disks and buffer pools, use of RAW devices for performance
gain, and separation of regular and long data, if desired.

Note: The exception to this is that SMS generally outperforms DMS for
temporary table spaces, except perhaps when large sorts are involved.

 Chapter 3. Application design and system performance considerations 143

When in doubt, and performance is the overriding factor, use DMS table
space raw logical volumes.

Number of tables per table space and table spaces per table?
The advantages of multiple tables per table space are essentially ease of
administration and space savings for small tables, while the potential
disadvantages are performance degradation due to disk contention accessing
different tables in the same table space on the same device at the same time,
and point-in-time recovery of individual tables.

Consider sharing a table space among tables under the following circumstances:

1. A collection of tables related through system or user-defined referential
integrity (RI) may share the same table space, if frequent point-in-time
recoveries are performed. This ensures that all related tables are consistent
after the recovery, thus avoiding any missed table spaces that could result in
CHECK PENDING states.

2. A number of small tables with small amounts of data that change infrequently
can share the same table space.

3. Group infrequently accessed data together in table spaces that use
containers on slower devices.

The advantages of a single table per table space or multiple table spaces per
table are greater tuning flexibility through separation of data and indexes for
placement and buffer pool assignment, and more granularity in defining
individual table backup strategies based on data volatility. The potential
disadvantages are the proliferation of table spaces and consequent
administration challenges, such as ensuring consistent point-in-time recovery of
a collection of table spaces.

Consider single table per table space or multiple table spaces per table under the
following circumstances:

1. With DMS table spaces, spanned tables can be defined (an example of such
a table is one which has its data in one table space, indexes in another table
space, and LOB data in a third table space).

Note: DB2 UDB Version 8 offers the ability to add a DMS container such
that a rebalance does not occur. The BEGIN NEW STRIPE SET option of the
ALTER TABLESPACE statement permits a container to be added above the
high water mark so that a rebalance does not occur.

DB2 UDB Version 8 also added the ability to drop or shrink DMS
containers.

144 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Spanned tables offer greater tuning flexibility such as separating data and
indexes, and placing the indexes in a table space with its own dedicated buffer
pool; this can help ensure that index pages are kept in memory.

2. Larger base tables which are heavily accessed and frequently updated justify
having their own SMS/DMS table space, and so do important tables. Isolating
tables in their own table space provides greater tuning flexibility since they
can be placed on separate disks and assigned a separate buffer pool. It also
provides greater flexibility in devising backup strategies based on the volatility
of individual table spaces.

3. If tables need to be monitored individually using commands such as the LIST
TABLESPACE SHOW DETAIL command, then those tables must have their own
table space. This command lists the number of used pages. In the case of a
DMS table space, the command also reports the number of free pages and
high water mark information.

4. For very large tables, consider table space capacity limits in isolating each
table in its own table space. The limits for single partition DB2 UDB table
spaces are 64 GB (4 K pages), 128 GB (8 K pages), 256 GB (16 K pages),
512 GB (32 K pages), 2 TB for long table spaces.

Choosing table space containers
A container is an allocation of physical storage such as a file or a device, and can
be identified by a directory name, a device name, or a file name. Containers are
assigned to table spaces. A single table space can span many containers, but
each container can belong to only one table space.

Typically disk I/O throughput with device containers (raw logical volumes on AIX)
shows an improvement of 10% to 35% as compared to file systems (JFS file
systems on AIX); the upper limit tends not to apply to databases. However, the
DBA needs to take into account that actual gains depend on the I/O workload mix
of the particular application.

A brief review of the considerations associated with each container type follows:

� Directory containers can only be exploited by SMS table spaces.

� File containers are used by DMS table spaces and are files of a preallocated
size.

DMS treats file and device containers in the same way. When the file is
created, DB2 will allocate the entire container (file) at table space creation
time. Even though this allocation is done at creation time, the operating
system’s file system may still fragment the file, resulting in the allocation of
pages being non-contiguous.

� Device containers can only be used by DMS table spaces.

 Chapter 3. Application design and system performance considerations 145

As in the case of file containers, space is also allocated at table space
creation time. However, unlike file containers, DB2 interacts with the raw
device directly, which ensures that page allocation is contiguous.

DMS table spaces that use raw device containers generally perform better
than file containers. The reason for this is that with file containers, the
database manager interacts with the operating system’s file system layer,
unlike raw device containers which the database manager manages directly.
An exception to this rule is a DMS table space using file containers that hold
LOB data. In this case, file container performance might be greater than that
of a device container, since the database manager takes advantage of the file
system cache.

Table 3-3 summarizes the relationship between containers DMS/SMS table
spaces.

Table 3-3 Container types for DMS and SMS table spaces

Best practices
We recommend the following best practices for choosing containers for table
spaces:

1. Directory containers only apply to SMS table spaces. Ensure that all
directories (containers) are specified at table space creation, since they
cannot be added later.

Each container of a table space should be mapped to one or more different
physical drives to improve parallel I/O.

2. Device containers should be used when maximum performance is desired;
the exception being DMS table spaces designed for LOB data, which would
benefit from file containers.

The use of DMS device containers avoids the double buffering scenario which
can occur with DMS file containers or SMS directory containers. This occurs
when pages are cached by the operating system in its file system cache, and
by DB2 in the buffer pools.

Note: LOB and LONG VARCHAR data is not buffered by DB2.

Container DMS SMS

Directory Yes

File Yes

Device Yes

146 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

3. Workloads like OLTP, which perform a large amount of random I/O operations,
benefit from the use of raw logical volumes.

4. Customers with BI applications, which perform a large number of sequential
I/O operations, generally benefit from the sequential read-ahead feature of
JFS file systems.

How many containers
A single table space can span many containers, but each container can belong to
only one table space.

Data for any table will be stored on all containers in a table space in a
round-robin fashion, as shown in Figure 3-8. It depicts how DB2 writes extent 0 to
container 1 on Disk A, then extent 1 to container 2 on Disk B, and then extent 2 to
container 3 on Disk C, and then continues in a round-robin fashion writing extents
3, 4, and 5. This balances the data across the containers that belong to a given
table space. The number of pages that the database manager writes to one
container before using a different one is called the extent size.

Figure 3-8 DB2 striping with containers

The number of containers defined for a table space has an impact on access
performance, and can limit the maximum size achievable for a table space.

� The size of a table space can be limited by the number of containers defined.
Each table space is limited to a maximum size for a given page size; for
example, a 4 K page size limits a table space to 64 GB, while an 8 K page
size limits it to 128 GB.

However, a poor choice in the number of containers can further restrict the
size of a table space to less than the maximum allowed for a given page size.
For example, assuming each container is mapped to a separate file system,

C o n t a i n e r 1

 D i s k A

0 3 1 4 2 5

 D i s k B D i s k C

C o n t a i n e r 2 C o n t a i n e r 3

E X T E N T

 Chapter 3. Application design and system performance considerations 147

the maximum achievable size of the table space (within the ceiling for a given
page size as mentioned earlier) is limited to the number of containers
multiplied by the maximum file system size supported by the operating
system.

� When there are multiple containers for a table space, the database manager
can exploit parallel I/O which refers to the process of writing to, or reading
from, two or more I/O devices simultaneously. Parallel I/O can result in
significant improvements in throughput.

While multiple containers can be created on the same physical disk, each
container for a table space should use a different disk for superior parallel I/O
performance.

The following considerations apply to containers.

Single or multiple containers
The size of the table space vis-a-vis the available container size determines
whether or not a single container may be used for the table space.

When the table space exceeds the size of a single container, an appropriate
number of containers needs to be defined.

In general, even small table spaces that could easily fit in a single container can
benefit from having multiple containers spread over a number of physical
volumes.

Best practices
Assuming that an adequate number of disks are available, we recommend that
each container be assigned to a separate disk or file system to maximize space
availability, minimize contention and improve performance, as follows:

1. Assigning each disk or file system to a table space provides the maximum
space capacity available to it.

2. Separating tables scanned simultaneously into separate table spaces with
separate disks can reduce disk head movement (and thus, seek time) when
doing sequential scans.

3. Any disk errors will be isolated to a single table space.

4. For OLTP environments with predominantly random I/O, consider having each
“disk” (single spindle or RAID array) spanned by multiple table spaces in order
to minimize hot-spots.

Attention: Multiple containers per file system may also be appropriate to
reduce inode contention in AIX.

148 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Size of containers
With single container table spaces, the container size limits the volume of data
stored.

With multiple containers per table space, the size of the individual containers can
impact parallel I/O performance as well as space utilization across all the
containers as follows:

� With unequal size containers and SMS table spaces, the table space is
considered full as soon as any one of the containers becomes full (this does
not apply to DMS table spaces).

� With unequal sizes of containers for a given DMS table space, the
effectiveness of any parallel prefetches performed against that table space is
reduced.

– When a smaller container becomes full and the data gets written to one of
the larger containers, the data in the containers become unbalanced. This
imbalance considerably reduces the effectiveness of parallel prefetching,
since a query may require only a small portion of the data from the small
container and a much larger portion from the larger container.

– When a small container is added to a table space which contains a
number of large containers, rebalance may occur (depending upon the
BEGIN NEW STRIPE SET option), which could result in the small container
containing far less data than that in the large containers, which will again
lead to less optimal parallel prefetching.

Best practices
We recommend that all containers for a single table space have the same size to
enhance parallel prefetching (for DMS table spaces) and avoid wasting space
(SMS table spaces).

Page size for the table space
The page size of a table space can affect the performance of an application and
overall system performance, as follows:

� Too small a page size can impact the performance of sequential processing
due to multiple I/Os. It may also increase the number of levels in the index for
large index key sizes and numbers of rows in the table.

However, smaller page sizes result in less page contention for update
workloads, reduce or eliminate wasted space in a page when using small
rows, avoid wastage of space in the buffer pool, and have smaller I/O request
sizes.

� Large page sizes can consume unnecessary memory in the buffer pools with
random I/Os, thereby impacting overall system performance. However, large

 Chapter 3. Application design and system performance considerations 149

page sizes increase a table space’s capacity, and enhance I/O performance
for large data scans as more rows are read with each I/O operation.

Table 3-4 summarizes the limits in rows sizes and number of columns for a given
page size.

Table 3-4 Page size, row and column limits

Best practices
We recommend the following best practices for the page size of a table space:

1. For OLTP workloads that mainly perform random read and writes, choose
smaller page sizes to ensure no wastage of space in the buffer pools.

2. For BI types workloads that perform sequential processing, choose larger
page sizes within the constraints of a maximum of 255 rows per page.

3. Consider larger page sizes for indexes in separate table spaces to reduce the
number of index levels, since more index keys will fit on each index leaf
page. However, since each index page can have only 255 index entries, a
small index size could result in wasted space with a large page size.

Extent size for the table space
The extent size (EXTENTSIZE parameter in the CREATE TABLESPACE statement)
determines the number of pages written to one container before switching to the
next container in round-robin fashion. It is also the unit of space allocation with
DMS table spaces. With SMS table spaces, the allocation is a page at a time,
unless multipage allocation is enabled via the db2empfa utility. The extent size is
also used in conjunction with the prefetch size to improve the performance of

Attention: A maximum of 255 rows can be accommodated on a page.
Choosing a page size greater than this limit only results in wasted space in the
page and memory in the buffer pool.

Page size Maximum row length Maximum columns

4 KB 4,005 bytes 500

8 KB 8,101 bytes 1012

16 KB 16,293 bytes 1012

32 KB 32,677 bytes 1012

Attention: Once the page size is defined for a table space, it cannot be
altered.

150 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

sequential access as described in “Prefetch size for the table space” on
page 152.

The default extent size is specified by the DFT_EXTENT_SZ database configuration
parameter, which has the default value of 32 pages.

DB2 allocates a minimum of two extents for each table object. Figure 3-9
highlights the extent allocation for DMS table spaces.

Figure 3-9 Extent allocation for DMS table space

The minimum initial extents requirement for a DMS table space when the first
storage object is created in it is as follows, assuming the default extent size of 32
pages:

6 extents = (6 * 32) = 192 pages

Attention: Once the extent size is defined for a table space, it cannot be
altered.

Table space
creation container tag 1 extent per container

table space header

space map page

object table data

1 extent

1 extent

1 extent

Table space
meta data

Object creation
(such as a table) extent for data

1 extent

1 extent

extent map

 Chapter 3. Application design and system performance considerations 151

Best practices
We recommend the following best practices in the selection of the extent size:

1. The default extent size is generally acceptable.

2. When using striped containers, the extent size should be an integral multiple
of the stripe size (such as RAID strip size).

3. Reduce the extent size for DMS table spaces with multiple small tables to
save space. If performance is not critical for these tables, consider using SMS
table spaces which allocate a page at a time.

4. For large tables in DMS table spaces with high insert activity, consider
increasing the extent size, since smaller extents will result in additional
overhead to allocate frequently required extents.

5. Use larger extent size values for table spaces that are mostly accessed in a
sequential manner as in BI environments. This would positively affect
sequential prefetching performance, as more data would be processed per
I/O request.

Prefetch size for the table space
DB2 may use sequential prefetch when accessing data sequentially; it issues
asynchronous sequential prefetch requests to bring data into the buffer pool in
advance of the application needing it. DB2 anticipates the sequential nature of an
application’s process such as a table scan, and enhances the performance of the
application by having the data in the buffer pool instead of necessitating

Note: By default in DB2 UDB Version 8, DB2 stores a container tag in the first
extent of each DMS container, whether it is a file or a device. The container
tag is the metadata for the container. Prior to DB2 Version 8.1, the container
tag was stored in a single page, and it thus required less space in the
container. To continue to store the container tag in a single page, set the new
registry variable DB2_USE_PAGE_CONTAINER_TAG to ON.

However, if you set this registry variable to ON when you use RAID devices for
containers, I/O performance might degrade. Because for RAID devices you
create table spaces with an extent size equal to or a multiple of the RAID
stripe size, setting the DB2_USE_PAGE_CONTAINER_TAG to ON causes the extents
not to line up with the RAID stripes. As a result, an I/O request might need to
access more physical disks than would be optimal.

Users are strongly advised against enabling this registry variable.

To activate this registry variable, you need to issue a db2stop command
followed by a db2start command.

152 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

synchronous application I/O. DB2 recognizes an application’s sequential
processing characteristics at bind time for static SQL, or prepare time for
dynamic SQL, and incorporates sequential prefetch into the access plan
developed.

DB2 also supports sequential detection, which detects data being accessed in a
sequential manner at run-time, which also triggers sequential prefetch.

The prefetch size (PREFETCHSIZE parameter in the CREATE TABLESPACE statement),
the extent size, and the container layout on disk are important factors in
determining prefetch performance and consequently the overall performance of
the database. When developing a prefetch request, DB2 considers the extent
size, prefetch size and the number of containers to develop the appropriate I/O
requests. If a table space’s containers are allocated over separate physical disks
(disk actuators or arms), DB2 can issue parallel read requests to improve
performance.

If multiple containers are used, DB2 can issue multiple extent size prefetch
requests. For example, with a prefetch size of 96 pages, an extent size of
32 pages, and three containers, DB2 will issue three extent size prefetch
requests against the three containers. If the three containers are allocated over
separate physical disks or ranks in the case of IBM ESS, parallel I/O will be used
using multiple prefetchers.

Figure 3-10 on page 154 shows how DB2 can drive multiple prefetch requests
with a table space created on RAID-5 with the DB2_PARALLEL_IO3 registry variable
enabled for all table spaces in the database.

Note: The buffer pool manager component may reject sequential prefetch
requests if it determines that pages that are currently used, or likely to be
used, by executing applications would be invalidated by the pages coming in.
Thus, aggressive prefetching can hurt performance instead of helping it.

3 When this variable is enabled, the database manager is able to issue parallel I/O requests to the
table space, even though it consists of a single container. This is appropriate for table spaces created
on RAID devices that are made up of more than one physical disk. When this variable is disabled, the
number of prefetcher requests created is based on the number of containers in the table space.

 Chapter 3. Application design and system performance considerations 153

Figure 3-10 DB2 prefetch example using RAID-5

Setting the correct prefetch size correctly will improve the database manager’s
ability to read pages in advance and reduce execution times.

The default value for prefetch is defined by the database configuration parameter
DFT_PREFETCH_SZ. Prefetch can be disabled by setting PREFETCHSIZE to zero for
this table space. The prefetch size can be modified via the ALTER TABLESPACE
statement.

Best practices
We recommend the following best practices for choosing the prefetch size:

1. The default prefetch size (32 pages on UNIX, 16 on Windows) generally
delivers acceptable performance.

Physical Disk Striping
 - Each extent aligned on an internal raid stripe
 boundary on RAID-5
 - Single prefetch drives all 6 drives simultaneously
 - Each disk must handle only one I/O

96 Page Prefetch

 Prefetchers

DB2SET DB2-PARALLEL-IO=*

DB2 create tablespace TSP_INV

Managed by database

Using (Device 'prdrhdl' 2048)

Pagesize 4k

Extensize 16 Prefetchsize 96

154 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

2. For optimal parallel prefetching, the containers in the table space should
reside on separate physical devices. This is particularly important when using
a DMS raw container, as there will be no prefetching or caching performed by
the operating system.

3. The prefetch size should be an integral multiple of EXTENTSIZE.

For most environments, choose a prefetch size that is equal to (EXTENTSIZE *
number of containers).

Performance monitoring metrics
The number of pages prefetched per request should be close to or equal to the
extent size. If the number of pages prefetched per request in to the buffer pool
are less than the extent size, the following conditions may exist:

� Buffer pool overheated/constrained
� Extent size is too large
� Prefetch size too large

3.3.6 Writing efficient SQL
SQL is a high level language that provides considerable flexibility in writing
queries which deliver the same answer set. However, not all forms of the SQL
statement deliver the same performance for a given query. It is therefore vital to
ensure that the SQL statement is written in a manner to provide optimal
performance.

DB2 UDB provides the SQL compiler which creates the compiled form of SQL
statements. When the SQL compiler compiles SQL statements, it rewrites them
into a form that can be optimized more easily. This is known as query rewrite.
The SQL compiler then generates many alternative execution plans for satisfying
the user’s request as shown in Figure 3-11 on page 156.

 Chapter 3. Application design and system performance considerations 155

Figure 3-11 The stages of the SQL compiler

The SQL compiler estimates the execution cost of each alternative plan using the
statistics for tables, indexes, columns, and functions, and chooses the plan with
the smallest execution cost. This is known as query optimization.

156 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The access plan for static SQL statements is created at bind time and contained
in a package. The package contains the access plan for all SQL statements in
the application program. For dynamic SQL statements, the access plan for each
SQL statement is created when the application is executed.

The following is a brief review of the main steps performed by the SQL compiler
as described in Figure 3-11 on page 156.

1. Parse Query involves analyzing the SQL query to check the syntax. When
parsing query is completed, an internal representation of the query called the
query graph model is created.

2. Check Semantics involves checks such as ensuring that the data type of the
column specified for the AVG column function is a numeric data type,
determining whether the views in the query need to be merged or
materialized.

3. Rewrite Query involves the SQL compiler rewriting the query to make it more
efficient, while retaining the semantic equivalence of the original query.
Categories of query rewrite include the following:

– Operation Merging, where a subquery can sometimes be merged into the
main query as a join, giving the optimizer more choices to determine the
most efficient access plan.

– Operation Moment, where the optimizer may remove the DISTINCT
operation to reduce the cost of operation.

– Predicate translation, where the SQL compiler may rewrite queries to
translate existing predicates to more optimal predicates.

4. Federated Pushdown Analysis is bypassed unless it is a federated
database query.

5. Optimize Access Plan involves creating an executable access plan, or
section, for the query. Information about the access plan for static SQL is
stored in the system catalog tables, which is used by the db2expln explain
tool.

6. Remote SQL Generation relates to a set of steps that operate on a remote
data source. For operations that are performed by each data source, the
remote SQL generation step creates an efficient SQL statement based on the
SQL dialect of the data source.

7. EXPLAIN Tables is where access path details are stored when EXPLAIN is
invoked. Either GUI tool Visual Explain or a text-based db2exfmt tool can be
used to examine the explain information in these tables.

Important: Keeping the database objects’ statistics up-to-date is critical to the
DB2 optimizer choosing the optimal access plan.

 Chapter 3. Application design and system performance considerations 157

From an application programmer’s perspective, coding efficient SQL involves the
following considerations:

1. Dynamic or static SQL

2. Minimizing the number of SQL statements issued

3. Limiting the volume of data returned - columns and rows

4. Guiding the DB2 optimizer towards a superior access path

5. Avoiding data type conversions

6. Minimizing network overheads

7. Minimizing concurrency problems

Dynamic or static SQL
When SQL statements are embedded in a program, they are called embedded
SQL programs. SQL can be embedded in C/C++, COBOL, and Java (SQLJ)
programming languages.

There are two types of SQL statements: dynamic and static. A brief overview of
each follows:

� Dynamic SQL statements are ones where the application builds and
executes the SQL at run time.

An interactive application that prompts the end user for key parts of an SQL
statement, such as the names of the tables and columns to be searched, is a
common example of dynamic SQL. The application builds the SQL statement
at runtime, and then submits the statement for processing.

Since access path generation occurs at run time (inline with query execution),
dynamic SQL statements leverage current database statistics in generating
an optimal access plan. However, dynamic SQL statements can take more
time to execute, since queries are optimized at runtime.

Performance of dynamic SQL statements can be improved by minimizing
preparation time by tuning the query optimization level.

If the query optimization class is higher than necessary, the preparation times
can be high since the DB2 Optimizer can spend more time finding the best
access plan for a query than is justified by a reduction in execution time.

� Static SQL statements are ones where the SQL statement type and the
database objects accessed by the statement, such as column names, are
known prior to running the application. The only unknowns are the data
values the statement is searching for or modifying.

Applications using static SQL must be precompiled and bound to the
database, so that the database manager analyzes all the static SQL
statements in a program, determines its optimal access plan, and stores the

158 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

ready-to-execute package prior to the execution of the program. Since all the
logic required to execute SQL statements is determined before executing the
program, static SQL programs have the least run time overhead of all DB2
programming methods, and execute faster.

Best practices
We recommend the following best practices for choosing between dynamic and
static SQL:

1. Static SQL statements are well-suited for OLTP environments that demand
high throughput and very fast response times. Queries tend to be simple,
retrieve few rows and stable index access is the preferred access path.

2. Dynamic SQL statements are generally well-suited for applications that run
against a rapidly changing database, where queries need to be specified at
run time. This is typical of BI environments.

Dynamic SQL can be written to use literals or parameter markers, as shown
in Example 3-3.

Example 3-3 Dynamic SQL with literals and parameter markers

---Dynamic SQL using literals
strcpy (st1,"SELECT * FROM EMPLOYEE WHERE empno=‘000100’");
strcpy (st2,"SELECT * FROM EMPLOYEE WHERE empno=‘000200’");
EXEC SQL PREPARE s1 FROM :st1;
EXEC SQL PREPARE s2 FROM :st2;
EXEC SQL DECLARE c1 CURSOR FOR s1;
EXEC SQL DECLARE c2 CURSOR FOR s2;
EXEC SQL OPEN c1;
EXEC SQL OPEN c2;
...
---Dynamic SQL using parameter markers
strcpy (st,"SELECT * FROM EMPLOYEE WHERE empno=’?’");
EXEC SQL PREPARE s1 FROM :st;
EXEC SQL DECLARE c1 CURSOR FOR s1;
EXEC SQL DECLARE c2 CURSOR FOR s1;
strcpy (parmvar1,"000100");
strcpy (parmvar2,"000100");
EXEC SQL OPEN c1 using :parmvar1;
...
EXEC SQL OPEN c2 using :parmvar2;
...

Note: Keeping table and index statistics up-to-date helps the DB2
optimizer choose the best access plan. However, SQL packages need to
be rebound for the DB2 optimizer to generate a new access plan based on
these statistics.

 Chapter 3. Application design and system performance considerations 159

If literals are used, each time the statement is run using a new value for the
literal requires DB2 to do a PREPARE. CPU time must be used to do the
PREPARE and in high volume applications, this can be quite expensive.

A parameter marker is represented with a question mark (?) in place of the
literal in the SQL statement. The parameter marker is replaced with a value at
run time by the application. Therefore, the SQL statement can be reused from
the package cache and does not require a subsequent PREPARE. This results
in faster query execution and reduced CPU consumption.

Dynamic SQL is appropriate for OLTP environments as well. When used in
OLTP environments in particular, we strongly recommend the use of
parameter markers in dynamic SQL to achieve superior performance.

3. For OLTP environments characterized by high concurrent activity, simple
SQL statements and subsecond response time requirements, the
optimization class should be set (SET CURRENT QUERY OPTIMIZATION
statement) to a lower value such as 1 or 2. If the optimization level is not
set in the CURRENT QUERY OPTIMIZATION special register, the DB2 optimizer
will table the value set in the DFT_QUERYOPT database configuration
parameter.

Minimize the number of SQL statements issued
Avoid using multiple SQL statements when the same request can be issued
using one SQL statement. This minimizes the cost of accessing DB2, and also
provides more information in an SQL statement, which enables the DB2
optimizer to choose a more optimal access path.

Limit the volume of data returned - columns and rows
SQL performance is enhanced by specifying only the columns of interest in the
select list of a query, and limiting the number of rows accessed using predicates.

Avoid the “SELECT *” construct, which specifies that all columns are to be
returned in the result set, resulting in needless processing.

Figure 3-12 on page 161 shows a simplified version of the components in DB2
and the categories of predicates that they evaluate.

Note: Keeping table and index statistics up-to-date helps the DB2
optimizer choose the best access plan. However, unlike the case with
static SQL, packages with dynamic SQL do not need to be rebound after
new indexes have been added and/or new statistics have been gathered.
But the package cache needs to be flushed via the FLUSH PACKAGE CACHE
command to ensure that the new statistics are picked up.

160 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-12 DB2 predicate types and components where they are evaluated

A brief description of the various components shown in Figure 3-12 follows:

� Relational Data Services (RDS) receive SQL requests from applications and
return the result set. RDS supports many operations for processing data such
as joins, grouping, aggregation, and math. RDS includes the DB2 optimizer,
which performs access path optimization and generates compiled SQL
sections. The RDS also includes catalog services that manage the metadata
describing the tables, indexes and views, as well as statistics on the data.

� Data Management Services (DMS) provide the data structures for tables, long
fields, large objects, and indexes. DMS also performs insert, update, and
delete operations on these structures.

Some of the components included in DMS are the Table Manager, Index
Manager, Long object Manager and Large object Manager.

There are four categories of predicates, each with its own processing cost. The
category is determined by how and when that predicate is evaluated.

Applications

Relational Data Service

Data Management Service

Index Manager

Data

Range delimiting predicates
Index SARGable predicates

Data SARGable predicates

Residual predicates

 Chapter 3. Application design and system performance considerations 161

The following categories list is ordered in terms of performance, starting with the
most favorable:

1. Range delimiting predicates are those used to bracket an index scan; they
provide start and/or stop key values for the index search. These predicates
are evaluated by the Index Manager.

2. Index SARGable4 predicates are not used to bracket a search, but are
evaluated from the index if one is chosen, because the columns involved
in the predicate are part of the index key. These predicates are also
evaluated by the Index Manager.

3. Data SARGable predicates are the predicates that cannot be evaluated by
the Index Manager, but can be evaluated by DMS. Typically, these
predicates require the access of individual rows from a base table. If
necessary, DMS will retrieve the columns needed to evaluate the
predicate, as well as any others to satisfy the columns in the SELECT list
that could not be obtained from the index.

4. Residual predicates are those that require I/O beyond the simple accessing of
a base table. Examples of residual predicates include those using quantified
sub-queries (sub-queries with ANY, ALL, SOME, or IN), or reading LONG
VARCHAR or large object (LOB) data which is stored separately from the table.
These predicates are evaluated by RDS and are the most expensive of the
four categories of predicates.

Table 3-5 on page 163 provides examples of various predicates and identifies
their type based on the context in which they are used.

4 SARGable refers to the fact that something can be used as a search argument

Note: In the examples, we assume that a multi-column ascending index exists
on (c1,c2,c3) and is used in evaluating the predicates where appropriate.

If any column in the index is in descending order, then the start and stop keys
might be switched for range delimiting predicates.

162 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Table 3-5 Predicate processing for different queries

Predicates Column c1 Column c2 Column c3 Comments

c1 = 1 and c2 = 2
and c3 = 3

Range
delimiting
(start-stop)

Range
delimiting
(start-stop)

Range
delimiting
(start-stop)

The equality predicates on all
the columns of the index can
be applied as start-stop keys.

c1 = 1 and c2 = 2
and c3 >= 3

Range
delimiting
(start-stop)

Range
delimiting
(start-stop)

Range
delimiting
(start)

Columns c1 and c2 are bound
by equality predicates, and the
predicate on c3 is only applied
as a start key.

c1 >= 1 and c2 = 2 Range
delimiting
(start)

Range
delimiting
(start-stop)

Not applicable The leading column c1 has a
>= predicate and can be used
as a start key. The following
column c2 has an equality
predicate, and therefore can
also be applied as a start-stop
key.

c1 = 1 and c3 = 3 Range
delimiting
(start-stop)

Not applicable Index
SARGable

The predicate on c3 cannot be
used as a start stop key, since
there is no predicate on c2. It
can, however, be applied as
an Index SARGable predicate.

c1 = 1 and c2 > 2
and c3 = 3

Range
delimiting
(start-stop)

Range
delimiting
(start)

Index
SARGable

The predicate on c3 cannot be
applied as a start-stop
predicate because the
previous column has a >
predicate.
Had it been a >= instead, we
would be able to use it as a
start-stop key.

c1 = 1 and c2 <= 2
and c4 = 4

Range
delimiting
(start-stop)

Range
delimiting
(stop)

Data
SARGable

Here the predicate on c2 is a
<= predicate. It can be used as
a stop key. The predicate on
c4 cannot be applied on the
index and is applied as a Data
SARGable predicate during
the FETCH.

 Chapter 3. Application design and system performance considerations 163

The DB2 optimizer employs the query rewrite mechanism to transform many
complex user-written predicates into better performing queries, as shown in
Table 3-6 on page 165.

c2 = 2 and
UDF_with_extern
al_action(c4)

Not applicable Index
SARGable

Residual The leading column c1 does
not have a predicate, and
therefore the predicate on c2
can be applied as an Index
SARGable predicate where
the whole index is scanned.
The predicate involving the
user-defined function with
external action is applied as a
Residual predicate.

c1 = 1 or c2 = 2 Index
SARGable

Index
SARGable

Not applicable The presence of an OR does
not allow us this multi-column
index to be used as start-stop
keys.
This might have been possible
had there been two indexes,
one with a leading column on
c1, and the other with a
leading column on c2, and the
DB2 optimizer chose an
"index-ORing" plan.
However, in this case the two
predicates are treated as
Index SARGable predicates.

c1 < 5 and (c2 = 2
or c3 = 3)

Range
delimiting
(stop)

Index
SARGable

Index
SARGable

Here the leading column c1 is
exploited to stop the index
scan from using the predicate
with a stop key. The OR
predicate on c2 and c3 are
applied as Index SARGable
predicates.

Predicates Column c1 Column c2 Column c3 Comments

164 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Table 3-6 Query rewrite predicates

Original predicate or query Optimized predicates Comments

c1 between 5 and 10 c1 >= 5 and c1 <= 10 The between predicates are
rewritten into the equivalent
range delimiting predicates so
that they can be used internally
as though the user specified the
range delimiting predicates.

c1 not between 5 and 10 c1 < 5 or c1 > 10 The presence of the OR
predicate does not allow the use
of a start-stop key unless the
DB2 optimizer chooses an
index-ORing plan.

select * from t1 where EXISTS
(select c1 from t2 where t1.c1 =
t2.c1)

select t1.* from t1 EOJOIN t2
where t1.c1= t2.c1

The subquery may be
transformed into a join —
internally a special join called an
“early out join” is used so that we
do not multiply the rows from t1
if there are multiple rows having
the same value in the join
column in t2

select * from t1 where t1.c1 IN (select
c1 from t2)

select t1.* from t1 EOJOIN t2
where t1.c1= t2.c1

This is similar to the
transformation for the EXISTS
predicate example above.

c1 like 'abc%' c1 >= 'abc X X X ' and c1 <=
'abc Y Y Y'

If we have c1 as the leading
column of an index, DB2
generates these predicates so
that they can be applied as
range-delimiting start-stop
predicates. Here the characters
X and Y are symbolic of the
lowest and highest collating
character.

c1 like 'abc%def' c1 >= 'abc X X X ' and c1 <=
'abc Y Y Y'
and c1 like 'abc%def'

This is like the previous case,
except that we have to
additionally apply the original
predicate as an index
SARGable predicate so as to
get the match for the characters
“def” correctly.

 Chapter 3. Application design and system performance considerations 165

Performance monitoring metrics
The explain tables identify the type of predicates in the predicate table.
Example 3-4 shows a sample SQL statement before and after query rewrite has
been performed by the DB2 optimizer. Assume there is an ascending
multi-column index on LAST_NAME, FIRST_NAME, DEPARTMENT_NO, AGE,
and that the DB2 optimizer uses this index in the execution of the query.

Example 3-4 Sample SQL statement before and after query rewrite

ORIGINAL STATEMENT:

select *
from employee
where last_name = 'ALUR' and first_name like 'N%' and department_no <> 490
 and age > 50 and salary > 100000.00 and 1 =
case
when exists
 (select 1
 from t1
 where employee.bonus = t1.c1)
then 1
when bonus > 10000
then 1
else 0 end

OPTIMIZED STATEMENT (after query rewrite):

SELECT Q3.SERIAL_NO AS "SERIAL_NO", Q3.FIRST_NAME AS "FIRST_NAME", 'ALUR ' AS
 "LAST_NAME", Q3.DEPARTMENT_NO AS "DEPARTMENT_NO", Q3.AGE AS "AGE",
 Q3.SALARY AS "SALARY", Q3.BONUS AS "BONUS", Q3.VARIABLE_PAY AS
 "VARIABLE_PAY"
FROM CALISTO.EMPLOYEE AS Q3
WHERE (+100000.00 < Q3.SALARY) AND (50 < Q3.AGE) AND (Q3.DEPARTMENT_NO <>
 490) AND (Q3.FIRST_NAME LIKE 'N%') AND (Q3.LAST_NAME = 'ALUR ') AND
 (1 =
CASE
WHEN EXISTS(SELECT RID
FROM CALISTO.T1 AS Q1
WHERE (Q3.BONUS = Q1.C1))
THEN 1
WHEN (Q3.BONUS > 10000)
THEN 1
ELSE 0 END)

166 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The type of each predicate in the original query is as shown in Example 3-5.

Example 3-5 Predicate type of each predicate using the original query

last_name = 'ALUR'
This is a range delimiting predicate (start/stop)

first_name like 'N%'
This is a range delimiting predicate (start/stop) after being converted to
(Q3.FIRST_NAME >= 'NXXXXXXXXXXXXXXXXXXX')
(Q3.FIRST_NAME <= 'NYYYYYYYYYYYYYYYYYYY')
where X and Y are are symbolical of the lowest and highest collating character

department_no <> 490
This is an index SARGable preddicate

age > 50
This is an index SARGable preddicate since the previous column predicate was
not =, >=, <=

salary > 100000.00
This is a data SARGable predicate

1 = case when exists
 (select 1
 from t1
 where employee.bonus = t1.c1)
 then 1
 when bonus > 10000
 then 1
 else 0
 end
This is a residual predicate

When the original SQL statement is EXPLAINed, the DB2 optimizer generates
entries in the various EXPLAIN tables corresponding to the transformed query
(query rewrite), and the predicate table will reflect the transformed predicates
and their type, as shown in Example 3-6 on page 168.

Note: The output does not differentiate between index SARGable and data
SARGable predicates; it identifies both of them as SARGable predicates.

However, the operator defines whether the predicate is index SARGable or
data SARGable—for example, the IXSCAN operator indicates an index
SARGable predicate, while a TBSCAN indicates a data SARGable predicate.

 Chapter 3. Application design and system performance considerations 167

Example 3-6 Predicate details from EXPLAIN

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.01.4
SOURCE_NAME: SQLC2E03
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2003-11-19-19.44.56.267596
EXPLAIN_REQUESTER: CALISTO

Database Context:

Parallelism: Inter-Partition Parallelism
CPU Speed: 4.000000e-05
Comm Speed: 1.25
Buffer Pool size: 1000
Sort Heap size: 256
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 850

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

....

....

....
Access Plan:

168 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Total Cost: 8.89956
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 0.00116053
 DTQ
 (2)
 8.89956
 0.08704
 |
 0.000580267
 FETCH
 (3)
 4.87761
 0.08704
 +------------+------------+
 0.04352 4.8 34
 IXSCAN BTQ TABLE: CALISTO
 (4) (5) EMPLOYEE
 1.88854 42.2932
 0 1
 | |
 34 2.4
 INDEX: CALISTO TBSCAN
 EMP_INDEX (6)
 37.3742
 1
 |
 120
 TABLE: CALISTO
 T1

1) RETURN: (Return Result)
Cumulative Total Cost: 8.89956
Cumulative CPU Cost: 166804
Cumulative I/O Cost: 0.08704
Cumulative Re-Total Cost: 0.513165
Cumulative Re-CPU Cost: 12829.1
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 8.88862

 Chapter 3. Application design and system performance considerations 169

Cumulative Comm Cost:2.00007
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 2.04352

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.0.32 : n031022
STMTHEAP: (Statement heap size)

2048

Input Streams:

8) From Operator #2

Estimated number of rows: 0.00116053
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q4.VARIABLE_PAY+Q4.BONUS+Q4.SALARY+Q4.AGE
+Q4.DEPARTMENT_NO+Q4.LAST_NAME+Q4.FIRST_NAME
+Q4.SERIAL_NO

Partition Column Names:

+NONE

2) TQ : (Table Queue)
Cumulative Total Cost: 8.89956
Cumulative CPU Cost: 166804
Cumulative I/O Cost: 0.08704
Cumulative Re-Total Cost: 0.513165
Cumulative Re-CPU Cost: 12829.1
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 8.88862
Cumulative Comm Cost:2.00007
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 2.04352

Arguments:

LISTENER: (Listener Table Queue type)

FALSE

170 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

TQMERGE : (Merging Table Queue flag)
FALSE

TQREAD : (Table Queue Read type)
READ AHEAD

TQSEND : (Table Queue Write type)
DIRECTED

UNIQUE : (Uniqueness required flag)
FALSE

Input Streams:

7) From Operator #3

Estimated number of rows: 0.000580267
Partition Map ID: 1
Partitioning: (MULT)

Multiple Partitions
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q4.VARIABLE_PAY+Q4.BONUS+Q4.SALARY+Q4.AGE
+Q4.DEPARTMENT_NO+Q4.LAST_NAME+Q4.FIRST_NAME
+Q4.SERIAL_NO

Partition Column Names:

+1: Q4.SERIAL_NO

Output Streams:

8) To Operator #1

Estimated number of rows: 0.00116053
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q4.VARIABLE_PAY+Q4.BONUS+Q4.SALARY+Q4.AGE
+Q4.DEPARTMENT_NO+Q4.LAST_NAME+Q4.FIRST_NAME
+Q4.SERIAL_NO

Partition Column Names:

 Chapter 3. Application design and system performance considerations 171

+NONE

3) FETCH : (Fetch)
Cumulative Total Cost: 4.87761
Cumulative CPU Cost: 66255.6
Cumulative I/O Cost: 0.08704
Cumulative Re-Total Cost: 0.513165
Cumulative Re-CPU Cost: 12829.1
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 4.86667
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 2.04352

Arguments:

MAXPAGES: (Maximum pages for prefetch)

1
MAXPAGES: (Maximum pages for prefetch)

1
PREFETCH: (Type of Prefetch)

NONE
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
TABLOCK : (Table Lock intent)

INTENT SHARE

Predicates:

4) Sargable Predicate

Relational Operator: Less Than (<)
Subquery Input Required: No
Filter Factor: 0.333333

Predicate Text:

(+100000.00 < Q3.SALARY)

9) Residual Predicate, Evaluate at Application Subquery
Relational Operator: Equal (=)
Subquery Input Required: Yes
Filter Factor: 0.04

Predicate Text:

(1 =
CASE

172 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

WHEN EXISTS(SELECT RID
FROM CALISTO.T1 AS Q1
WHERE (Q3.BONUS = Q1.C1))
THEN 1
WHEN (Q3.BONUS > 10000)
THEN 1
ELSE 0 END)

Input Streams:

2) From Operator #4

Estimated number of rows: 0.04352
Partition Map ID: 1
Partitioning: (MULT)

Multiple Partitions
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q3.FIRST_NAME(A)+Q3.DEPARTMENT_NO(A)
+Q3.AGE(A)+Q3.RID+Q3.LAST_NAME

Partition Column Names:

+1: Q3.SERIAL_NO

3) From Object CALISTO.EMPLOYEE

Estimated number of rows: 34
Partition Map ID: 1
Partitioning: (MULT)

Multiple Partitions
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q3.VARIABLE_PAY+Q3.SERIAL_NO+Q3.BONUS
+Q3.SALARY

Partition Column Names:

+1: Q3.SERIAL_NO

6) From Operator #5

 Chapter 3. Application design and system performance considerations 173

Estimated number of rows: 4.8
Partition Map ID: 1
Partitioning: (MULT)

Multiple Partitions
Number of columns: 0
Subquery predicate ID: 9

Partition Column Names:

+NONE

Output Streams:

7) To Operator #2

Estimated number of rows: 0.000580267
Partition Map ID: 1
Partitioning: (MULT)

Multiple Partitions
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q4.VARIABLE_PAY+Q4.BONUS+Q4.SALARY+Q4.AGE
+Q4.DEPARTMENT_NO+Q4.LAST_NAME+Q4.FIRST_NAME
+Q4.SERIAL_NO

Partition Column Names:

+1: Q4.SERIAL_NO

4) IXSCAN: (Index Scan)
Cumulative Total Cost: 1.88854
Cumulative CPU Cost: 47213.6
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.470103
Cumulative Re-CPU Cost: 11752.6
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 1.87918
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 1

Arguments:

MAXPAGES: (Maximum pages for prefetch)

174 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

ALL
PREFETCH: (Type of Prefetch)

NONE
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
SCANDIR : (Scan Direction)

FORWARD
TABLOCK : (Table Lock intent)

INTENT SHARE

Predicates:

2) Stop Key Predicate

Relational Operator: Less Than or Equal (<=)
Subquery Input Required: No
Filter Factor: 0.333333

Predicate Text:

(Q3.FIRST_NAME <= 'NZZZZZZZZZZZZZZZZZZZ')

3) Start Key Predicate
Relational Operator: Greater Than or Equal (>=)
Subquery Input Required: No
Filter Factor: 0.333333

Predicate Text:

(Q3.FIRST_NAME >= 'N...................')

5) Sargable Predicate
Relational Operator: Less Than (<)
Subquery Input Required: No
Filter Factor: 0.333333

Predicate Text:

(50 < Q3.AGE)

6) Sargable Predicate
Relational Operator: Not Equal (<>)
Subquery Input Required: No
Filter Factor: 0.96

Predicate Text:

(Q3.DEPARTMENT_NO <> 490)

8) Start Key Predicate

 Chapter 3. Application design and system performance considerations 175

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

Predicate Text:

(Q3.LAST_NAME = 'ALUR ')

8) Stop Key Predicate
Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

Predicate Text:

(Q3.LAST_NAME = 'ALUR ')

Input Streams:

1) From Object CALISTO.EMP_INDEX

Estimated number of rows: 34
Partition Map ID: 1
Partitioning: (MULT)

Multiple Partitions
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q3.FIRST_NAME(A)+Q3.DEPARTMENT_NO(A)
+Q3.AGE(A)+Q3.RID+Q3.LAST_NAME

Partition Column Names:

+1: Q3.SERIAL_NO

Output Streams:

2) To Operator #3

Estimated number of rows: 0.04352
Partition Map ID: 1
Partitioning: (MULT)

Multiple Partitions
Number of columns: 5
Subquery predicate ID: Not Applicable

176 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Column Names:

+Q3.FIRST_NAME(A)+Q3.DEPARTMENT_NO(A)
+Q3.AGE(A)+Q3.RID+Q3.LAST_NAME

Partition Column Names:

+1: Q3.SERIAL_NO

5) TQ : (Table Queue)
Cumulative Total Cost: 42.2932
Cumulative CPU Cost: 402811
Cumulative I/O Cost: 1
Cumulative Re-Total Cost: 11.6513
Cumulative Re-CPU Cost: 261762
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 36.1495
Cumulative Comm Cost:4.03306
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 1

Arguments:

LISTENER: (Listener Table Queue type)

TRUE
TQMERGE : (Merging Table Queue flag)

FALSE
TQREAD : (Table Queue Read type)

READ AHEAD
TQSEND : (Table Queue Write type)

BROADCAST
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

5) From Operator #6

Estimated number of rows: 2.4
Partition Map ID: 1
Partitioning: (CORR)

Directed to Single Partition based on correlation
value

Number of columns: 0
Subquery predicate ID: 9

Partition Column Names:

 Chapter 3. Application design and system performance considerations 177

+1: Q3.BONUS

Output Streams:

6) To Operator #3

Estimated number of rows: 4.8
Partition Map ID: 1
Partitioning: (MULT)

Multiple Partitions
Number of columns: 0
Subquery predicate ID: 9

Partition Column Names:

+NONE

6) TBSCAN: (Table Scan)
Cumulative Total Cost: 37.3742
Cumulative CPU Cost: 309355
Cumulative I/O Cost: 1
Cumulative Re-Total Cost: 10.4705
Cumulative Re-CPU Cost: 261762
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 31.2304
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 1

Arguments:

MAXPAGES: (Maximum pages for prefetch)

1
PREFETCH: (Type of Prefetch)

NONE
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
SCANDIR : (Scan Direction)

FORWARD
TABLOCK : (Table Lock intent)

INTENT SHARE

Predicates:

10) Sargable Predicate

Relational Operator: Equal (=)

178 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Subquery Input Required: No
Filter Factor: 0.02

Predicate Text:

(Q3.BONUS = Q1.C1)

Input Streams:

4) From Object CALISTO.T1

Estimated number of rows: 120
Partition Map ID: 1
Partitioning: (CORR)

Directed to Single Partition based on correlation
value

Number of columns: 2
Subquery predicate ID: 9

Column Names:

+Q1.RID+Q1.C1

Partition Column Names:

+1: Q3.BONUS

Output Streams:

5) To Operator #5

Estimated number of rows: 2.4
Partition Map ID: 1
Partitioning: (CORR)

Directed to Single Partition based on correlation
value

Number of columns: 0
Subquery predicate ID: 9

Partition Column Names:

+1: Q3.BONUS

Objects Used in Access Plan:

 Chapter 3. Application design and system performance considerations 179

Schema: CALISTO
Name: EMP_INDEX
Type: Index

Time of creation: 2003-11-19-19.29.10.180726
Last statistics update:
Number of columns: 4
Number of rows: 34
Width of rows: -1
Number of buffer pool pages: 1
Distinct row values: No
Tablespace name: USERSPACE1
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32
Index clustering statistic: 80.000000
Index leaf pages: 1
Index tree levels: 1
Index full key cardinality: 25
Index first key cardinality: 25
Index first 2 keys cardinality: -1
Index first 3 keys cardinality: -1
Index first 4 keys cardinality: -1
Index sequential pages: 1
Index page density: -1
Index avg sequential pages: -1
Index avg gap between sequences:-1
Index avg random pages: -1
Fetch avg sequential pages: -1
Fetch avg gap between sequences:-1
Fetch avg random pages: -1
Index RID count: 0
Index deleted RID count: 0
Index empty leaf pages: 0
Base Table Schema: CALISTO
Base Table Name: EMPLOYEE
Columns in index:

LAST_NAME
FIRST_NAME
DEPARTMENT_NO
AGE

Schema: CALISTO
Name: EMPLOYEE
Type: Table

Time of creation: 2003-11-19-18.39.22.321031
Last statistics update:
Number of columns: 8

180 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Number of rows: 34
Width of rows: 85
Number of buffer pool pages: 1
Distinct row values: No
Tablespace name: USERSPACE1
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32
Table overflow record count: 0
Table Active Blocks: -1

Schema: CALISTO
Name: T1
Type: Table

Time of creation: 2003-11-19-19.42.06.484719
Last statistics update:
Number of columns: 3
Number of rows: 120
Width of rows: 17
Number of buffer pool pages: 1
Distinct row values: No
Tablespace name: USERSPACE1
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32
Table overflow record count: 0
Table Active Blocks: -1

Guiding the DB2 optimizer towards a superior access path
DB2 provides the following SQL options/constructs that guide the DB2 optimizer
in selecting an access path most suited for the application:

1. OPTIMIZE FOR n ROWS clause

This clause as shown in Example 3-7 influences query optimization based on
the assumption that n rows will be retrieved. This clause also determines the
number of rows that are blocked in the communication buffer.

Example 3-7 OPTIMIZE FOR n ROWS

SELECT projno,projname,repemp FROM project
WHERE deptno=’D11’ OPTIMIZE FOR 10 ROWS

 Chapter 3. Application design and system performance considerations 181

Row blocking is a technique that reduces database manager overhead by
retrieving a block of rows in a single operation, as described in “Use blocking
cursors” on page 183. These rows are stored in a cache, and each FETCH
request in the application gets the next row from the cache. If you specify
OPTIMIZE FOR 10 ROWS, a block of rows is returned to the client every ten rows.

Specify the OPTIMIZE FOR n ROWS clause in the SELECT statement when:

– The number of rows you want to retrieve is significantly less than the total
number of rows that could be returned.

– You need to access the first n rows quickly and can wait for the rest of the
rows.

2. FETCH FIRST n ROWS ONLY clause

Specify the FETCH FIRST n ROWS ONLY clause as described in Example 3-8 if
you do not want the application to retrieve more than n rows, regardless of
how many rows there might be in the result set when this clause is not
specified. This clause cannot be specified with the FOR UPDATE clause.

Example 3-8 FETCH FIRST n ROWS ONLY

SELECT projno,projname,repemp FROM project
 WHERE deptno=’D11’
 FETCH FIRST 5 ROWS ONLY

Example 3-8 returns not more than 5 rows.

The FETCH FIRST n ROWS ONLY clause also determines the number of rows
that are blocked in the communication buffer. If both the FETCH FIRST n
ROWS ONLY and OPTIMIZE FOR n ROWS clause are specified, the lower of the
two values is used to determine the communication buffer size.

3. FOR FETCH ONLY clause

When no cursor based updates are planned, specify the FOR FETCH ONLY
clause in the SELECT statement. It can improve performance by allowing the
query to take advantage of row blocking. It can also improve data
concurrency, since only S locks will be taken on the rows retrieved by a query
with this clause specified.

Note: The OPTIMIZE FOR n ROWS clause does not limit the number of
rows that can be fetched or affect the result in any way other than
performance. Using OPTIMIZE FOR n ROWS can improve the performance
if no more than n rows are retrieved, but may degrade performance if
more than n rows are retrieved.

182 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Avoid data type conversions
Data type conversions, especially numeric data type conversions, should be
avoided whenever possible.

When two values are compared, it may be more efficient to use items that have
the same data type. Example 3-9 demonstrates a join of two tables, TableA and
TableB, on columns A1 of TableA and column B1 of TableB.

Example 3-9 Data type conversions example

SELECT * FROM TableA,TableB WHERE A1=B1

If columns A1 and B1 are the same data type, no data type conversion is
required. But if they are not the same data type, a data type conversion occurs to
compare values at run time and it might affect the performance. For example, if
A1 is a decimal column and B1 is an integer column and each has a value ‘123’,
data type conversion is needed, as TableA stores it as x‘123C’, whereas TableB
stores it as x‘7B’.

Also, inaccuracies may result when data type conversions occur due to limited
precision.

Minimize network overheads
Applications accessing DB2 over a network should adopt the following coding
techniques to achieve superior performance:

1. Use blocking cursors
2. Use compound SQL
3. Use Deferred Prepare
4. Use stored procedures

Use blocking cursors
Row blocking is a technique that reduces database manager overhead by
retrieving a block of rows in a single operation. These rows are stored in a cache,
and each fetch request in the application gets the next row from the cache. When
all the rows in the block have been processed, another block of rows is retrieved
by the database manager.

The cache is allocated when an application issues an OPEN CURSOR request and is
deallocated when the cursor is closed. The size of the cache is determined by
the following database configuration parameters:

Note: The FOR READ ONLY clause is synonymous with the FOR FETCH ONLY
clause.

 Chapter 3. Application design and system performance considerations 183

� For local applications, the database configuration parameter aslheapsz.

� For remote applications, database configuration parameter rqrioblk on the
client workstation; this cache is allocated on the database client.

The FETCH FIRST n ROWS ONLY clause and FOR FETCH ONLY clause described in
“Guiding the DB2 optimizer towards a superior access path” on page 181 enable
row blocking.

Use compound SQL
Compound SQL is a technique to build one executable block from several SQL
statements. When compound SQL is being executed, each SQL statement in the
block is executed individually, but the number of requests transmitting between
client and server is reduced.

Compound SQL is supported in stored procedures and the following application
development processes:

� Embedded static SQL
� DB2 Call Level Interface
� JDBC

Example 3-10 shows compound SQL executing two UPDATE statements and one
INSERT statement.

Example 3-10 Compound SQL

EXEC SQL BEGIN COMPOUND ATOMIC STATIC
 UPDATE tablea SET cola = cola * :var1;
 UPDATE tableb SET colb = colb + :var2;
 INSERT INTO tablec (colc,cold,cole) VALUES (:i,:j,0);
 END COMPOUND;

Compound SQLs may be atomic or non-atomic; the type determines how the
entire block is handled when one or more SQL statements in the block happen to
end in error.

� Atomic specifies that if any SQL statement in the block ends in error, the
entire block is considered to have ended in error, and any changes made to
the database within the block should be rolled back.

� Non-atomic specifies that when all statements have completed the
application receives a response. Even if one or more statements in the block
end in error, the database manager attempts to execute all statements in the
block. If the unit of work containing the compound SQL is rolled back, then all
changes made to the database within the block will be rolled back.

184 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Use Deferred Prepare
Dynamic SQL is prepared at run time, static SQL is prepared at precompile time.
As well as requiring more processing, the preparation step may incur additional
network traffic at run time. The additional network traffic can be avoided if the
DB2 CLI application makes use of deferred prepare, which is the default
behavior.

Deferred prepare is the name of the CLI feature that seeks to minimize
communication with the server by sending both the prepare and execute
requests for SQL statements in the same network flow. The default value for this
property can be overridden using the CLI/ODBC configuration keyword
DEFERREDPREPARE. This property can be set on a per-statement handle basis by
calling SQLSetStmtAttr() to change the SQL_ATTR_DEFEFERRED_PREPARE statement
attribute.

When deferred prepare is on, the prepare request is not sent to the server until
the corresponding execute request is issued. The two requests are then
combined into one command/reply flow (instead of two) to minimize network flow
and to improve performance. Because of this behavior, any errors that would
typically be generated by SQLPrepare() will appear at execute time, and
SQLPrepare() will always return SQL_SUCCESS.

Deferred prepare is of greatest benefit when the application generates queries
where the answer set is very small, and the overhead of separate requests and
replies is not spread across multiple blocks of query data.

Use stored procedures
Stored procedures are similar to applications running on the client in that they
can contain SQL and business logic, but unlike client applications they are stored
on the database server, and run as functions invoked through the DB2 engine by
the client. Because they execute on the database server itself, and retrieve,
manipulate and store data without crossing the network, they can reduce
network traffic, and may improve performance. Stored procedures can also be
used to centralize and standardize business rules across business applications.
They facilitate business rule reuse by being centrally located in the database.
Since stored procedures consume CPU cycles on the database server, they may
not be appropriate if CPU cycles are scarce on the database server.

Note: Even if deferred prepare is enabled, operations that require a statement
to be prepared prior to the operation’s execution will force the prepare request
to be sent to the server before the execute. Describe operations resulting from
calls to SQLDescribeParam() or SQLDescribeCol() are examples of when
deferred prepare will be overridden, because describe information is only
available after the statement has been prepared.

 Chapter 3. Application design and system performance considerations 185

Best practices
We recommend the following best practices for achieving superior performance
with stored procedures:

1. Consider the use of stored procedures when an independent block of SQL
statements and business logic retrieves or manipulates more than a few rows
of data, and/or when a block of SQL or other business logic is applicable to
multiple business applications.

2. Do not use stored procedures for trivial client or application requests across
the network, since there is an overhead associated with invoking stored
procedures.

3. For OLTP, a stored procedure should generally be used when a transaction
has more than 4 or 5 SQL statements.

4. Stored procedures written in C using static SQL, or using SQL in PSM,
typically give the best performance since they avoid the overhead of preparing
SQL statements on each stored procedure invocation.

Minimize concurrency problems
Applications should be written to reduce the cost of locking and minimize locking
contention when accessing shared data, as discussed in “Concurrency” on
page 186.

3.3.7 Concurrency
Concurrency is critical to the performance and throughput of multi-user
environments accessing shared data. Throughput and concurrency depend upon
database configuration parameters and application design.

Database configuration parameters LOCKLIST, MAXLOCKS and DLCHKTIME impact
concurrency and throughput, and are described in detail in 3.4.6, “Locking
considerations” on page 260; they are only discussed in passing here. In this
section, we focus mainly on application design considerations.

This section is organized as follows:

� Brief overview of DB2 locking

� Performance considerations

� Application locking considerations

Brief overview of DB2 locking
DB2 has a sophisticated locking implementation that enables a wide range of
capabilities, from coarse table level locks to fine granularity row level locks, all
under user control.

186 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

DB2 locks different database objects including databases, table spaces, tables,
blocks (MDCs only) and rows.

In the following sections, we briefly review the following:

� Hierarchy of locks

� Lock type compatibility

� Lock conversion

� Isolation level

� Lock escalation

� Deadlocks

Hierarchy of locks
The hierarchy of DB2 locks is shown in Figure 3-13.

Figure 3-13 Lock hierarchy

A listing and brief description of the various locks is provided in Table 3-7 on
page 188.

Database Lock

Block Level Lock
(MDCs only)

Table space Intent Lock

Block Intent Lock
(MDCs only)

(IN, IS, IX)

(IN, IS, IX, SIX)(S, U, X)

Table space Level Lock
(Z)

LOCKSIZE
ROW
TABLE

Isolation
RR
RS
CS
UR

Row Locks
(NS, NW, S, U, W, X)

Table Level Lock Table Intent Lock
(IN, IS, IX, SIX)(S, U, X, Z)

 Chapter 3. Application design and system performance considerations 187

Table 3-7 Lock modes shown in order of increasing control over resources

Note: Only tables and table spaces obtain the “intent” lock modes. Intent locks
are not obtained for rows.

Lock mode Applicable object type Description

IN (Intent None) Table spaces, blocks,
tables

The lock owner can read
any data in the object,
including uncommitted
data, but cannot update
any of it. Other concurrent
applications can read or
update the table.

IS (Intent Share) Table spaces, blocks,
tables

The lock owner can read
data in the locked table,
but cannot update this
data. Other applications
can read or update the
table.

NS (Next Key Share) Rows The lock owner and all
concurrent applications
can read, but not update,
the locked row. This lock is
acquired on rows of a
table, instead of an S lock,
where the isolation level of
the application is either RS
or CS.
NS lock mode is not used
for next-key locking. It is
used instead of S mode
during CS and RS scans to
minimize the impact of
next-key locking on these
scans.

S (Share) Rows, blocks, tables The lock owner and all
concurrent applications
can read, but cannot
update, the locked data.

188 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

IX (Intent Exclusive) Table spaces, blocks,
tables

The lock owner and
concurrent applications
can read and update data.
Other concurrent
applications can both read
and update the table.

SIX (Share with Intent
Exclusive)

Tables, blocks The lock owner can read
and update data. Other
concurrent applications
can read the table.

U (Update) Rows, blocks, tables The lock owner can update
data. Other units of work
can read the data in the
locked object, but cannot
attempt to update it.

NW (Next Key Weak
Exclusive)

Rows When a row is inserted into
an index, an NW lock is
acquired on the next row.
For type 2 indexes, this
occurs only if the next row
is currently locked by an
RR scan. The lock owner
can read, but cannot
update, the locked row.
This lock mode is similar to
an X lock, except that it is
also compatible with W
and NS locks.

X (Exclusive) Rows, blocks, tables The lock owner can both
read and update data in
the locked object. Only
uncommitted read
applications can access
the locked object.

Lock mode Applicable object type Description

 Chapter 3. Application design and system performance considerations 189

W (Weak Exclusive) Rows This lock is acquired on the
row when a row is inserted
into a table that does not
have type-2 indexes
defined. The lock owner
can change the locked
row.
To determine if a duplicate
value has been committed
when a duplicate value is
found, this lock is also
used during insertion into a
unique index. This lock is
similar to an X lock except
that it is compatible with
the NW lock. Only
uncommitted read
applications can access
the locked row.

Z (Superxclusive) Table space, tables This lock is acquired on a
table in certain conditions,
such as when the table is
altered or dropped, an
index on the table is
created or dropped, or for
some types of table
reorganization.
No other concurrent
application can read or
update the table.

Important: When transactions cause changes to type-1 indexes, some next
key locking occurs. For type-2 indexes however, there is minimal next key
locking.

Type-2 indexes offer significant performance and availability advantages over
type-1 indexes, and you are strongly encouraged to migrate existing type-1
indexes to type-2 indexes.

For details on type-2 indexes, refer to IBM DB2 UDB Administration Guide:
Performance, SC09-4821.

Lock mode Applicable object type Description

190 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Lock type compatibility
Figure 3-14 describes the compatibility matrix of the various lock modes. A no
indicates that the requestor must wait until all incompatible locks are released by
other processes. A timeout can occur waiting for a lock. A yes indicates that the
lock is granted, unless someone else is waiting for the resource.

Figure 3-14 Lock type compatibility

Lock conversion
Lock conversion occurs when a process accesses a data object on which it
already holds a lock, and the mode of access requires a more restrictive lock
than the one already held. A process can hold only one lock on a data object at
any time, although it can (indirectly, through a query) request a lock many times
on the same data object. The operation of changing the mode of the lock already
held is called a lock conversion.

 Chapter 3. Application design and system performance considerations 191

Isolation level
An isolation level determines how data is locked or isolated from other
processes, while the data is being accessed. The isolation level chosen is
effective for the duration of the unit of work.

DB2 supports the following isolation levels:

� Repeatable Read (RR)
� Read Stability (RS)
� Cursor Stability (CS)
� Uncommitted Read (UR)

RR is the most restrictive, while UR is the least restrictive. Table 3-8 summarizes
the different isolation levels.

Table 3-8 Summary of different isolation levels

Table 3-9 provides a simple, heuristic way to help you choose an initial isolation
level for your applications. Consider this table a starting point; however, a
thorough understanding of the semantics of the various isolation levels and their
impact on concurrency might make another isolation level more appropriate.

Table 3-9 Guidelines for choosing an isolation level

Choosing the appropriate isolation level for an application is very important to
avoid the phenomena that are intolerable for that application. The isolation level
affects not only the degree of isolation among applications, but also the
performance characteristics of an individual application, since the CPU and
memory resources that are required to obtain and free locks vary with the
isolation level. The potential for deadlock situations also varies with the isolation
level.

Isolation Level Access to Un-
committed data

Non-repeatable
reads

Phantom Read
Phenomenon

Repeatable Read Not possible Not possible Not possible

Read Stability Not possible Not possible Possible

Cursor Stability Not possible Possible Possible

Uncommitted Read Possible Possible Possible

Application type High data stability
required

High data stability not
required

Read-write transactions RS CS

Read-only transactions RR or RS UR

192 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Lock escalation
Lock escalation is an internal mechanism that is invoked by the DB2 lock
manager to reduce the number of locks held. Escalation occurs from row locks to
a table lock when the number of locks held exceed the thresholds defined by the
database configuration parameters LOCKLIST and MAXLOCKS.

Lock escalation can significantly impact concurrency and degrade response
times of concurrent applications.

Deadlocks
Deadlocks occur when more than two or more applications wait on one another
for resources that are held by the other. None of the applications can proceed
until at least one of the waiting applications is forced to relinquish its lock. A
process is required to break these deadlock situations. Figure 3-15 describes the
deadlock concept.

Figure 3-15 Deadlock scenario

A user may control the granularity of locking via the LOCKSIZE parameter of the
CREATE/ALTER TABLE statement, and the isolation levels specified at bind
(ISOLATION parameter) or the WITH option on the SELECT statement.

The default is row locking for the table, and cursor stability (CS) for the isolation
level.

 Chapter 3. Application design and system performance considerations 193

For details on lock modes, isolation levels, lock isolations and deadlocks, refer to
DB2 UDB Administration Guide: Performance, SC09-4821.

Performance considerations
The trade-off of locking is concurrency versus lock processing cost.

� Greatest concurrency is achieved when each application takes the smallest
possible lock on the least number of rows and holds it for the shortest
possible duration; this means taking row locks, UR or CS isolation levels and
committing frequently. However, this tends to incur significant CPU processing
cost as well as memory utilization for locks.

� Acquiring a table lock incurs the least processing cost because only one lock
is held and memory utilization is only a few bytes. However, concurrency can
be significantly impacted if concurrent access to the table is desired by
readers and updaters.

Application locking considerations
Applications should be designed to balance concurrency with low processing
cost.

In most cases, applications try to provide maximum concurrency while
minimizing lock waits, lock timeouts, deadlocks and lock processing overhead.
As mentioned earlier, this is achieved by holding the smallest possible lock on the
least number of rows and holding it for the shortest possible duration.

Best practices
We recommend the following best practices for achieving maximum concurrency
with minimum lock contention:

1. Let the LOCKSIZE parameter in the CREATE TABLE default to row locking so that
the smallest lock size is requested.

2. Commit frequently to reduce the duration a lock is held. For batch processing,
in an OLTP environment, a reasonable starting point for commits is after every

Important: Locks are usually taken implicitly on behalf of an application
during the execution of a query. Understanding the number and kinds of locks
obtained on DB2 objects is helpful to effective tuning for maximum
concurrency.

Note: The exception is a read only environment such as in data
warehousing where table locks combine the advantages of high
concurrency and low lock processing cost.

194 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

500 to 1000 updates corresponding to transactional boundaries, which should
then be tuned to address the specific requirements of your environment.
Committing too frequently can increase concurrency, but negatively impact
performance because of the overheads of flushing log buffers and lock
release costs.

3. Avoid LOCK TABLE statement with EXCLUSIVE mode

This statement promotes an existing lock on a table to a most restrictive state,
which can have a very detrimental impact on concurrency and overall system
throughput.

4. Specify the FOR FETCH ONLY clause in the SELECT statement as described in
“FOR FETCH ONLY clause” on page 182. This results in the acquiring of less
restrictive S share locks conducive to greater concurrency.

5. Specify the FOR UPDATE clause in a cursor definition to minimize the cost of
lock conversions as well as potential deadlocks.

A cursor based update should have the FOR UPDATE clause in the SELECT
statement of the cursor definition. This results in the database manager
choosing U (update) locks instead of S (shared) locks — this saves the cost of
performing lock conversions from S locks to U locks when the succeeding
UPDATE statement is processed.

The other benefit to specifying the FOR UPDATE clause is that it can decrease
the possibility of deadlock as follows:

Assume two applications each using cursor stability isolation are trying to
fetch the same row and update it simultaneously using cursors without the FOR
UPDATE clause in the following order as shown in Figure 3-16:

– Step 1: Application1 fetches the row with an S lock on it.

– Step 2: Application2 fetches the same row with an S lock on it as well
since there is no lock conflict with shared locks.

– Step 3: Application1 attempts to update the row; it needs to convert its S
lock to a U lock, but has to wait till Application2 releases its S lock.

– Step 4: Application2 attempts to update the row; it needs to convert its S
lock to a U lock, but has to wait till Application1 releases its S lock.

Both applications wait on each other to release its lock, resulting in a
deadlock!

 Chapter 3. Application design and system performance considerations 195

Figure 3-16 Cursor-based deadlocks without FOR UPDATE clause

With the FOR UPDATE clause in the DECLARE CURSOR statement as shown in
Example 3-11, Application1 fetches the row with a U lock in step 1, but when
Application 2 tries to fetch the same row in step 2 with a U lock, it has to wait
until Application1 releases its U lock. Deadlocks are thus avoided, but lock
waits occur and a timeout may even happen, depending upon how long
Application2 waits for the lock.

Example 3-11 Cursor definition with FOR UPDATE clause

EXEC SQL DECLARE c1 CURSOR FOR select * from employee
 FOR UPDATE OF job;
EXEC SQL OPEN c1;
EXEC SQL FETCH c1 INTO...;
if (strcmp (change,"YES") == 0)
EXEC SQL UPDATE employee SET job=:newjob
 WHERE CURRENT OF c1;
EXEC SQL CLOSEc1;

CLI programs can set SQL_MODE_READ_WRITE to the DB2 CLI connection
attribute SQL_ATTR_ACCESS_MODE using the SQLSetConnectAttr() function to
achieve the same results.

For further details, refer to DB2 UDB Call Level Interface Guide and
Reference, Volume 1, SC09-4849, and DB2 UDB Call Level Interface
Guide and Reference, Volume 2, SC09-4850.

6. Perform SQL INSERT, UPDATE and DELETE at the end of a unit of work, if
possible. This narrows the window of restrictive X locks, which enhances
concurrency.

DECLARE c1 CURSOR
OPEN c1
FETCH c1
UPDATE tablea

Application1

Tablea

row1

DEAD
LOCK!

DECLARE c1 CURSOR
OPEN c1
FETCH c1
UPDATE tablea

Application2

1. Acquire
 S Lock

3. Try to get U Lock
 and Wait

2. Acquire
 S Lock

4.Try to get U Lock
 and Wait

196 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

7. Consider LOCKSIZE TABLE under the following circumstances since it incurs
the least lock processing cost, because no row locks are taken and only a
single lock is acquired with this option:

– For read only tables in environments such as data warehousing.
Concurrency is not an issue since all applications request share locks that
are compatible with each other.

– For tables which are only updated by a single application in a “batch
window”. Concurrency is not an issue, even though an X lock would be
taken on the table since there is no concurrent access to the table during
batch processing.

8. Choose the minimally restrictive isolation level required for the application.
The order from least restrictive to most restrictive level is UR, CS, RS and RR.
This results in row locks being held for the smallest duration.

– Use the UR isolation level for queries against read-only tables, or when
access to uncommitted data is acceptable. This isolation level provides
maximum concurrency.

– Use the CS isolation level for maximum concurrency when access to only
committed data is acceptable.

– Use the RS isolation level when the application requires qualified rows to
remain stable for the duration of the unit of work.

– Use the RR isolation level when the application requires the result set to be
consistent for the duration of the unit of work. This isolation level provides
the least concurrency.

9. Release read locks using the WITH RELEASE option of the CLOSE CURSOR
statement if acceptable to the application; this reduces the duration the locks
are held and therefore enhances concurrency.

Note that this only applies to cursors with the RR and RS isolation level. The
normal operation without the WITH RELEASE option is that locks get released at
the end of the unit of work.

10.Access objects in applications in a sequence that supports a high degree of
concurrency with minimal deadlocks. For example:

– Assume application A first accesses table T1, then updates table T1,
followed by access to table T2 and update of table T2.

– Assume application B first accesses table T2, then updates table T2,
followed by access to table T1 and update of table T1.

This sequence of processing can result in deadlocks if both applications need
access to the individual rows locked by the other. By ensuring that both
applications access and update tables T1 and T2 in the same sequence,

 Chapter 3. Application design and system performance considerations 197

deadlocks can be minimized. However, lock waits and timeouts may still
occur.

11.Tune the database configuration parameters LOCKLIST, MAXLOCKS and
DLCHKTIME to minimize lock escalations and optimize deadlock detection
cycles as described in 3.4.6, “Locking considerations” on page 260.

12.OLTP environments are high throughput and transactional in nature, and
should therefore use row level locking with CS isolation level unless there is a
specific reason for a more restrictive lock. They should also commit more
frequently to reduce the duration a lock is held.

13.BI environments are low throughput and predominantly read only in nature,
and either table level locks or row locks with CS or UR isolation level would be
appropriate.

3.4 System environment considerations
While application design is critical, there are a number of system considerations
that can significantly impact overall system performance. System tuning is
typically performed by DBAs in conjunction with operating system administrators.

The following system performance-related considerations are discussed here:

� I/O placement considerations
� Log considerations
� Monitor switch settings
� Connection considerations
� Buffer pool considerations
� Locking considerations
� Package cache considerations
� Catalog cache considerations
� Sort considerations
� Other memory considerations
� Miscellaneous considerations

3.4.1 I/O placement considerations
Proper disk subsystem placement of critical DB2 objects is essential to reducing
I/O times and ensuring high availability of these objects.

Figure 3-17 on page 199 describes the default directory structure for a database.
Figure 3-18 on page 200 highlights the main DB2 objects.

198 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-17 Default database directory structure

The drive or directory specified on the CREATE DATABASE command

NODE0000

SQL00001

DB2EVENT

SQLT0000.0

SQLT0001.0

SQLT0002.0

The name of the DB2 instance

The partition number of the database,
0 for a non-partitioned database

The database ID, starts at 1, increases for
all subsequent databases

The default event directory for the database

The catalog table space, SYSCATSPACE

The temporary table space, TEMPSPACE1

The user table space, USERSPACE1

DB2 Instance Name

SQLOGDIRThe default log directory for the database

The name of the DB2 instance

Drive / Directory

Drive / Directory The drive or directory specified on the CREATE DATABASE command

DB2 Instance Name

The name of the DB2 instanceDB2 Instance Name

 Chapter 3. Application design and system performance considerations 199

Figure 3-18 DB2 objects placement

Figure 3-18 highlights the four categories of DB2 objects as follows:

� DB2 logs.

� Regular table spaces, which include:

– User data and indexes in the default USERSPACE1 table space or in one or
more user-defined table spaces.

– System catalogs that store DB2 metadata in the SYSCATSPACE catalog table
space.

� Large table space (previously called Long table space) that stores LOBs,
Long Varchar columns and indexes.

� Temporary table space that consists of two types of table spaces:

– User temporary table spaces that store declared global temporary tables.

DB

Large (Long)
Tablespace

Regular
Tablespace

Logs

Userspace1
(User tablespace)

Temporary
Tablespace

Syscatspace
(Catalog tablespace)

Disk

Instance

User tables
Indexes

User temporary
declared global
temporary tables

System temporary
Sorts
Joins
Index creation
Reorg

LOBs
Long
Varchar
Indexes

DB

Disk
Disk(s) Disk(s) Disk(s)Disk(s)

Container(s) Container(s) Container(s)Container(s)

200 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

– System temporary table spaces that are used as spill areas for tasks such
as sorts, joins, index creation and reorgs.

Performance considerations
A well-balanced I/O subsystem is critical to overall system performance. Placing
DB2 objects with contending access patterns on the same disk subsystem can
negatively impact overall system performance and should be avoided if possible.

Best practices
We recommend the following best practices for DB2 object placement to achieve
superior performance and availability:

1. A general rule of thumb for the amount of disk space required for a database
is four times the estimated size of raw data.

2. The general rule of thumb for a database is a minimum of 6 to 10 disks per
CPU (excluding operating system and other component requirements). If
there are fewer than 6 disks per CPU, then spread all the table spaces across
all the available physical disks. If there are more than 6 to 10 disks per CPU,
then assign table spaces to different disks as per table activity/priority.

In scenarios where you need to prioritize different applications, you may
isolate those applications’ high priority DB2 objects to different devices in
order to achieve superior performance for those applications. However, this
could increase the risk of creating a poorly performing configuration.

3. DB2 logs are critical DB2 objects that need to be protected. Ideally (assuming
sufficient number of disks) logs should be placed on separate disks and disk
controllers totally isolated from all the other DB2 objects, as this will allow for
efficient logging activity with a minimum of overhead, such as waiting for I/O.
DB2 logs should also be duplicated using either disk mirroring or dual logging.

Ensure that the file system for logs is created using the “large file enabled”
option as described in “Filesystem recommendations” on page 359.

4. The system catalog table space should be isolated on separate disks; the
default SMS table space should be adequate in most environments.

5. User table space contains user tables and indexes, and the assignment of
these SMS or DMS table spaces to disks should be on the basis of their
individual activity and priority characteristics. In general, the isolation scheme
should be based on the table space activity/priority as shown in Table 3-10,
assuming there are enough disks available.

Note: Spreading “everything over everything” (all table spaces on all
devices) is easy and generally produces good results.

 Chapter 3. Application design and system performance considerations 201

Table 3-10 Table space activity/priority compatibility matrix

6. Large table spaces contain LOB and LONG VARCHAR column data. Reads
and writes to this table space bypass the buffer pool, and therefore benefit by
being defined as SMS table spaces or DMS table spaces that use file
containers, since they both exploit the file system cache.

In general, these table spaces should be spread across multiple disks and
containers based on capacity and activity/priority considerations.

7. System temporary table spaces (for different page sizes) should be SMS
table spaces and should also be assigned to separate disks if possible. A
large buffer pool is highly recommended to avoid sort temporary tables
spilling over to disk, especially in OLTP environments. Consider a minimum of
3 to 4 containers for a system temporary table space.

– OLTP environments generally do not have many or large sorts, and a
single system temporary table space should be adequate spread over
multiple containers. The default 4 K page size is generally enough in these
environments.

– BI environments, on the other hand, tend to have many large sorts and
may use multiple page sizes. It is desirable to have only one system
temporary table space per page size. You may need to create table spaces
with a page size larger than 4 K (and corresponding buffer pools),
depending upon the row length and columns used in the tables in the
database. A separate buffer pool may be appropriate for temporary table
spaces in BI environments.

8. User temporary table spaces have considerations similar to user table spaces
containing user data in DGTTs. A single SMS table space spread across
multiple disks for each page size required is probably enough in most cases.

Performance monitoring metrics
To determine whether the I/O placement of DB2 objects are satisfactory requires
analysis of the combined results of table space activity using DB2 commands,
and device utilization using operating system commands.

High
activity/priority

Medium
activity/priority

Low
activity/priority

High activity/priority No No Yes

Medium activity/priority No Maybe Yes

Low activity/priority No Yes Yes

Important: This information needs to be collected over a reasonable time
period in order to identify reliable trends for proper analysis.

202 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The steps involved are:

1. Collect disk utilization statistics
2. Identify table space activity
3. Map file systems to underlying disks
4. Determine relationship between disk utilization and table spaces
5. Revisit I/O placement decisions, if necessary

Collect disk utilization statistics
Collect disk utilization statistics using operating system tools such as iostat in
AIX as shown in Figure 3-19. The % tm_act column lists the percentage5 of time
the disk was busy representing bandwidth utilization, while the tps column shows
the number of transfers per second to each disk.

Figure 3-19 AIX iostat command results

For Windows, refer to 5.3.4, “Monitoring and problem determination tools” on
page 387.

Identify table space activity
Identify table space activity of all table spaces, as shown in Example 3-12, using
the following command:

db2 get snapshot for tablespaces on <db_alias>

This provides details of table space activity and container information, as well as
buffer pool activity.

5 A value greater than 40% typically indicates a problem.

 Chapter 3. Application design and system performance considerations 203

Example 3-12 Table space snapshot

db2 => get snapshot for tablespaces on sample

 Tablespace Snapshot

First database connect timestamp = 10-15-2003 17:30:31.379938
Last reset timestamp =
Snapshot timestamp = 10-15-2003 17:31:19.521976
Database name = SAMPLE
Database path = C:\DB2\NODE0000\SQL00002\
Input database alias = SAMPLE
Number of accessed tablespaces = 3

..........

Tablespace name = USERSPACE1
 Tablespace ID = 2
 Tablespace Type = System managed space
 Tablespace Content Type = Any data
 Tablespace Page size (bytes) = 4096
 Tablespace Extent size (pages) = 32
 Tablespace Prefetch size (pages) = 16
 Buffer pool ID currently in use = 1
 Buffer pool ID next startup = 1
 Tablespace State = 0x'00000000'
 Detailed explanation:
 Normal
 Total number of pages = 694
 Number of usable pages = 694
 Number of used pages = 694
 Minimum Recovery Time =
 Number of quiescers = 0
 Number of containers = 1

 Container Name = C:\DB2\NODE0000\SQL00002\SQLT0002.0

 Container ID = 0
 Container Type = Path
 Total Pages in Container = 694
 Usable Pages in Container = 694
 Stripe Set = 0
 Container is accessible = Yes

 Buffer pool data logical reads = 3
 Buffer pool data physical reads = 1
 Asynchronous pool data page reads = 0
 Buffer pool data writes = 0
 Asynchronous pool data page writes = 0

204 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Asynchronous pool index page reads = 0
 Buffer pool index writes = 0
 Asynchronous pool index page writes = 0
 Total buffer pool read time (ms) = 16
 Total buffer pool write time (ms) = 0
 Total elapsed asynchronous read time = 0
 Total elapsed asynchronous write time = 0
 Asynchronous read requests = 0
 Direct reads = 0
 Direct writes = 0
 Direct read requests = 0
 Direct write requests = 0
 Direct reads elapsed time (ms) = 0
 Direct write elapsed time (ms) = 0
 Number of files closed = 0
 Data pages copied to extended storage = 0
 Index pages copied to extended storage = 0
 Data pages copied from extended storage = 0
 Index pages copied from extended storage = 0

The container name is available from the results of this command. It may also be
obtained by issuing db2 list tablespace containers for <n> as shown in
Figure 3-20 on page 206, where n is the tablespace id.

Note: For SMS table spaces, the container name displayed is a directory
(C:\DB2\NODE0000\SQL00002\SQLT0002.0 in Example 3-12). For DMS
table spaces, the name displayed is that of a file or a raw device, for example
/u1/tablespaces/tbs_data.

 Chapter 3. Application design and system performance considerations 205

Figure 3-20 List tablespace containers output

Map file systems to underlying disks
Determine the underlying physical disks of these containers for AIX using the
method described in “Mapping filesystems to physical disks” on page 364.

For Windows, use the method described in “Mapping filesystems to physical
disks” on page 388.

Determine relationship between disk utilization and table spaces
After collecting the disk utilization statistics, identifying the table space activity,
and mapping the file systems to underlying disks, you can determine the
relationship between high utilization disks, the table spaces located on each of
the physical disks, and the activity level of individual table spaces on each
physical disk.

> DMS file container

> SMS directorypath

Note: You can drill down to activity against specific tables in a multi-table by
identifying the tables in the table space of interest, and then taking table
snapshot information by using the SQL snapshot feature as shown in
Figure 3-21 on page 207. This provides details of the number of rows read
and written, which is the measure of activity against the respective tables.

206 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-21 Output of table snapshot using SQL snapshot function

Revisit I/O placement decisions if necessary
The mapping generated in the previous step can be used to revisit I/O placement
decisions to minimize I/O contention for superior performance.

The disk utilization information collected from sources such as health indicators
Table Space Utilization (for DMS) and Table Space Container Utilization
(for SMS) of the Health Center, as described in “Heath Monitor and Health
Center” on page 100, can be used to track space utilization in order to allocate
additional containers if required.

3.4.2 Log considerations
Logging is critical for maintaining the integrity, recoverability, and availability of
the database environment. DB2 provides a number of logging options for
managing the recoverability of the database environment; these options need to
be configured carefully in order to achieve optimal logging performance.

In the following subsections, we provide an overview of DB2 logging and discuss
the key decisions to be made for achieving superior logging performance.

� Logging overview
� Performance drivers

Logging overview
All databases have logs associated with them. These logs keep records of
database changes and system activity. If a database needs to be restored to a

 Chapter 3. Application design and system performance considerations 207

point beyond the last full, offline backup, logs are required to roll the data forward
to the point of failure. Logs are also required to restart the system after a crash
such as a power failure; this is called crash recovery.

The following are some of the main characteristics of logging:

1. DB2 logs can be written to file systems or raw logical volumes. Using raw
logical volumes for logging provides slightly improved performance compared
to using UNIX directories.

2. DB2 implements dual logging when the mirrorlogpath database
configuration parameter is configured with a path name.

When dual logging is enabled, the log files are written sequentially. The log
buffer is first flushed to the first log, and a write is initiated to the second log
on completion of the write to the first log. This may have a slight impact on
performance.

Note: Disk mirroring technology may also be used to achieve higher log
availability.

3. DB2 supports two types of logging, archive logging and circular logging.

a. Archive logging

When archiving is enabled, a log file is archived when it fills with log
records. New log files are made available for log records. Archive logging
is used specifically for rollforward recovery. Archive logging is enabled
when the database configuration parameter logretain is set to recovery
and/or the userexit database configuration parameter is set to yes.

b. Circular logging (the default)

As the name suggests, circular logging uses a “ring” of online logs to
provide recovery from transaction failures and system crashes. The logs
are used and retained only to the point of ensuring the integrity of current
transactions.

The database configuration parameters logretain and userexit are both
set to no. With this type of logging, only full, offline backups of the
database are allowed. The database must be offline (inaccessible to
users) when a full backup is taken.

Circular logging does not allow you to roll a database forward through
transactions performed after the last full backup operation. All changes
occurring since the last backup operation are lost.

Note: Sample USEREXIT programs are present under
<instance-home-directory>/sqllib/samples/c for AIX and <DB2 install
directory>\IBM\SQLLIB\samples\c in Windows.

208 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

4. DB2 supports the concept of primary and secondary logs. One or more log
files (logprimary database configuration parameter) may be defined to store
log records. When they become full, spillover occurs to secondary logs
(logsecond database configuration parameter). The primary log files establish
a fixed amount of storage allocated to the recovery log files, and the
logprimary parameter specifies the number of primary log files to be
preallocated.

The use of primary and secondary log files, as well as the action taken when
a log file becomes full, are dependent on the type of logging that is being
performed:

– With circular logging, a primary log file can be reused when the changes
recorded in it have been committed. If the size of the log (logfilsiz
database configuration parameter) is small and applications have
processed a large number of changes to the database without committing
the changes, a primary log file can quickly become full. When a log is full,
the next primary log in the sequence is used if it is available. A log is
considered available if all units of work with log records in it have been
committed or rolled back.

If the next primary log in sequence is not available, then a secondary log is
allocated and used. Additional secondary logs are allocated and used until
the next primary log in the sequence becomes available, or the limit
imposed by the logsecond parameter is reached. These secondary logs
are dynamically deallocated when they are no longer needed by the
database manager.

– With archive logging, when a primary log file is full, the log is archived and
a new primary log file is allocated.

When the log disk is full, the action taken depends upon the setting of the
blk_log_dsk_full database configuration parameter.

– If set to NO (default), then a transaction that receives a log disk full error
(SQL0964N ‘Log full’) fails and is rolled back.

– If set to YES, applications will hang when DB2 encounters a log disk full
error; this allows the DBA to resolve the error and enables the applications
to complete successfully.

The log disk full situation can be resolved by moving old log files to
another file system or by enlarging the file system, so that hanging
applications can complete.

Users will not be able to commit their transactions until the new log file is
successfully created.

DB2 attempts to create the log file every five minutes until it succeeds. After
each attempt, DB2 writes a message to the Administration Notification log.
The only way that you can confirm that your application is hanging because of

 Chapter 3. Application design and system performance considerations 209

a log disk full condition is to monitor the Administration Notification log. Until
the log file is successfully created, any user application that attempts to
update table data will not be able to commit transactions. Read-only queries
may not be directly affected; however, if a query needs to access data that is
locked by an update request, or a data page that is fixed in the buffer pool by
the updating application, read-only queries will also appear to hang.

Read-only queries may not be directly affected; however, if a query needs to
access data that is locked by an update request, or a data page that is fixed in
the buffer pool by the updating application, read-only queries will also appear
to hang.

5. DB2 defines the concept of active logs and archive logs

– An active log is primarily meant to support transaction recovery and crash
recovery; these logs are written with both archive and circular logging.

These logs are currently in use by transactions. They are used during
crash recovery. They are used to apply or undo the appropriate
transactions to change the database to a consistent and usable stage.

These logs are located in the directory listed in the informational database
configuration parameter logpath.

– An archive log is primarily for rollforward recovery, and is created when the
user exit creates it or it is done manually. Archived logs are logs that were
active but no longer required for crash recovery.

6. Log records are written to a log buffer (database configuration parameter
logbufsz) and are flushed to disk by the logger process (db2loggr) under the
following circumstances:

– When transaction commits or a group of transactions commit as defined
by the database configuration parameters mincommit.

Note: The maximum total active log space is 256 GB, unless infinite log
space is defined by setting the logsecond database configuration
parameter set to -1.

When infinite log space is enabled, it allows transaction recovery to
occur from archive logs as well, since it places no limit on the size or
number of in-flight transactions running in the database. Active logs can
be archived when infinite log space is enabled.

Infinite log space requires archive logging; logretain must be set to
recovery and/or userexit database configuration parameter must be
set to yes.

The default is infinite active log space is disabled.

210 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

– When one second has elapsed since the last log buffer flush.

– Before the corresponding data pages are written to disk, because DB2
uses write-ahead logging. The benefit of write-ahead logging is that when
a transaction completes by executing the COMMIT statement, not all of
the changed data and index pages need to be written to disk.

– Before some changes are made to metadata, most of which result from
executing DDL statements.

– On writing log records into the log buffer, if the log buffer is full.

The default value is 8 x 4 K pages.

7. Log records are read from the log during transaction rollback, crash recovery,
and rollforward recovery.

Performance drivers
The following performance drivers need to be tuned for optimal performance of
the logging system:

� Choice of the type of logging - archive or circular
� File system or raw logical volumes for the logs
� Single or dual logging
� logprimary, logsecond and logfilsiz db cfg parameters
� logbufsz db cfg parameter
� mincommit db cfg parameter
� blk_log_dsk_full db cfg parameter

In the following sections, each of these drivers is discussed in turn: their
performance considerations, best practices, and performance monitoring
metrics.

Choice of the type of logging - archive or circular
This is not directly related to performance as much as it is related to the need to
support rollforward recovery.

� OLTP environments should choose archive logging, since they require
rollforward recovery.

� BI environments should generally choose archival logging as well, unless it is
a purely read-only environment, in which case circular logging may be
appropriate.

Note: The transaction issuing the commit has to wait until the log buffer
has been flushed to disk. With dual logging, it has to wait until the write is
completed to both logs.

 Chapter 3. Application design and system performance considerations 211

The trend is towards updateable BI environments (for example, real time BI
scenarios where transactions directly update data warehouses), and
therefore archival logging is recommended.

File system or raw logical volumes for the logs
Raw logical volume I/Os generally outperform file system I/O, but there are other
considerations as follows:

� The advantages of using raw logical volumes are:

– The I/O path is shorter, since the operating system’s file system is
bypassed.

– Raw device striping may provide faster I/O throughput.

– There are no restrictions like those of size imposed by a file system.

– A raw logical volume can span multiple disks.

� The disadvantages of using raw logical volumes are:

– The device (logical volume) created for the logs must be dedicated to DB2.

– There are limited tools and utilities available for operating on or backing up
logs created on raw logical volumes, compared to tools for
filesystem-based logs.

– They can not take advantage of file system cache.

High throughput/performance OLTP environments should choose file system
logging in general, unless the benefits of slightly superior performance of raw
devices are critical to the application workload and outweigh their disadvantages.

BI environments and low-to-medium OLTP environments should typically not
require the increased I/O performance benefits of raw devices; therefore, file
system logging should be adequate.

Single or dual logging
While this is primarily an issue of availability, having dual logging requires twice
the amount of disk space, and it also impacts response time, since the write to
the second log is done serially. The additional response time overhead depends
upon the average time to perform the log write I/O.

Mission-critical OLTP environments should use dual logging even though there
may be a slight performance penalty that could affect high
throughput/performance OLTP environments.

BI environments should probably find single logging sufficient, since such
environments probably use circular logging and rollforward recovery is not
required.

212 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

logprimary, logsecond, and logfilsiz db cfg parameters
The size and number of primary logs have an impact on disk space utilization
since this space is preallocated. Secondary logs are allocated on an as needed
basis.

From an active log space point of view:

� Overallocating logprimary can result in wasted space because this space is
preallocated, unlike logsecond, which is allocated on demand.

� Having too small an active log space can result in log full conditions unless
infinite log space is enable by setting logsecond to -1. While infinite log space
prevents log full conditions, it has the potential to degrade performance of
crash recovery and transaction rollback if the required log records need to be
retrieved from the archived logs.

For a given amount of available disk capacity, the question that needs to be
answered is whether it is more efficient to have a few primary logs with large file
sizes, or many primary logs with smaller file sizes.

� With a larger log file size and a smaller number of primary logs:

– The main advantage is of lower costs of switching logs as one becomes
full.

– The disadvantages are as follows:

• Unacceptable data loss in log shipping to remote locations in support
of disaster recovery scenarios.

• With archive logging, if the log cannot be archived in time, then DB2
may have to wait for a usable log file to become available.

• There is, potentially, a greater likelihood of data loss due to log media
failures because of less frequent archiving.

• Could incur large crash recovery times depending upon the softmax
database configuration parameter value.

� With a smaller log file size and a larger number of primary logs, the converse
applies:

– The main advantages are as follows:

• Less data loss in log file shipping to remote locations in support of
disaster recovery scenarios.

• With archive logging, less likelihood of waits for a usable log to become
available.

• Less likelihood of data loss due to log media failures because of the
occurrence of more frequent archiving.

– The disadvantages are as follows:

 Chapter 3. Application design and system performance considerations 213

• Higher switching costs as one log fills up.

• Higher log file allocation costs with archive logging.

• Higher performance costs with archive logging, since it involves more
work on the part of the database manager.

Best practices
We recommend the following best practices for primary and secondary logs and
size of the log files:

1. There is no specific rule of thumb for determining the number of primary and
secondary logs for a given workload.

The total active log space ((logprimary + logsecond) x logfilsiz) should
accommodate all the log records generated by the longest running
transaction, as well as the log records generated by all transaction executed
within the interval of the longest running transaction. Preferably, the total
active log space should be supported by primary logs only, since secondary
logs are meant to be used as a safety valve to avoid log full conditions.

Without a means to compute the required total active log space, you should
assume your available disk log space is the same as the total active log
space, and then monitor usage to tune the logprimary,logsecond, and
logfilsiz parameters for your particular environment.

For an existing system, you can determine the log space taken up by a single
unit-of-work (UOW) as shown in Figure 3-22 on page 215. This involves
obtaining the Application Id or Appl.Handle from the db2 list
applications command, and then using this Application Id for an
application snapshot to determine the amount of log space consumed at the
UOW level. By collecting UOW log space (uowlogspace) consumed for the
transaction generating the most log records (performs the most updates) and
estimating the number of transactions (numtrans) executed in the longest
running transaction interval, you can roughly estimate the total active log
space required as being equal to (uowlogspace x numtrans).

Note: The maximum log file size is 262144 4 K pages on UNIX and WIndows.

The default is 250 4 K pages on Windows, and 1000 4 K pages on UNIX.

214 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-22 List application and application snapshot for UOW log space used

2. For OLTP and BI environments:

– Archive logging is recommended. Circular logging may be appropriate for
BI environments that are purely read-only.

– Choose as large a logfilsiz (the current limit is 262144 4 KB pages) as
possible within the guidelines of log shipping, archiving and crash recovery
time considerations mentioned earlier.

– Assume 90% of available log space to be reserved for primary logs, and
the rest (10%) for secondary logs. Depending upon the file size chosen
(logfilsiz), the logprimary value is computed as ((90% * available log
space)/logfilsiz) rounded up to an integer value. Ensure that the value of
logprimary is at least greater than 3 to avoid wait for usable logs due to
archiving problems. Choose an appropriate value for logsecond based on
the remaining available space (10%) and logfilsiz.

Performance monitoring metrics
There are a number of performance elements captured by the snapshot monitor
that can be monitored to tune the logprimary, logsecond, and logfilsiz
parameters. The two main ones described here are the database snapshot and
the administration notification log, as follows:

1. Database snapshot

Figure 3-23 on page 216 shows relevant fields that are the output of database
snapshot information for the DTW database obtained via the following
command:

db2 get snapshot for database on DTW

 Chapter 3. Application design and system performance considerations 215

Figure 3-23 Command line database snapshot containing log information

The fields of interest are:

– Log space available to the database (Bytes) is a gauge and identifies
the amount of active log space in the database that is not being used by
uncommitted transactions. If this value goes down to zero, message
SQL0964N is returned.

– Log space used by the database (Bytes) is a gauge and identifies the
total amount of active log space currently used in the database.

– Maximum secondary log space used (Bytes) is a high water mark.

– Maximum total log space used (Bytes) is also a high water mark and
includes space consumed by both primary and secondary logs.

– Secondary logs allocated currently is a gauge representing the
number of secondary logs allocated at that point in time.

These fields should be evaluated in conjunction with each other to determine
whether a configuration change is required.

Important: All the fields in the Snapshot Monitor whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before
reacting with configuration changes.

Note that counter type monitoring elements should be reset at the
beginning of each monitoring interval by issuing the RESET MONITOR
command.

216 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

– Consistent secondary log allocations and a high water mark for the
secondary log space used vis-a-vis the total log space used indicates that
performance could be improved by:

• Increasing the number of primary log files (logprimary).

• Increasing the size of the log file (logfilsiz).

• Issuing more commits in application programs, which tends to reduce
the size of the active log space, which in turn makes log files available.

Note: This measure requires application development cooperation.

– Consistently low levels of available active log space as identified by Log
space available to the database (Bytes) vis-a-vis Log space used by
the database (Bytes) indicates a need to increase logprimary,
logfilsiz, and possibly issue more commits in application programs as
described earlier.

2. Administration notification log

Figure 3-24 shows the contents of the administration notification log, which
contains messages about log full conditions.

Figure 3-24 Notification log displaying log full condition

Consistent occurrences of log full conditions also indicate that performance
could be improved by increasing logprimary and logfilsiz, and issuing
more commits in application programs as described earlier.

logbufsz db cfg parameter
Having a large buffer size is generally beneficial since it reduces the number of
times a buffer is written to the disk due to log buffer full conditions. A large buffer
size is also minimizes the number of reads from disk in transaction rollback
situations.

Attention: If additional disk space is not available to increase logprimary or
logfilsiz, then consider enabling infinite log space by setting logsecond -1.
While this setting may degrade performance of rollback and crash recovery, it
avoids the log full condition.

 Chapter 3. Application design and system performance considerations 217

However, if the application workload is such that log writes are triggered more
often due to reasons other than log buffer full conditions, and there are infrequent
transaction rollback situations, then the memory utilized by logbufsz in the
database heap (dbheap database configuration parameter) could well be better
served elsewhere.

Best practices
We recommend the following best practices for logbufsz:

1. For OLTP environments, choose logbufsz of 1024 4 K pages, since the
default value of 8 4 K pages is insufficient.

2. For BI environments, choose logbufsz of 512 4 K pages, since the default
value of 8 4 K pages is insufficient.

Performance monitoring metrics
The purpose of monitoring is to determine whether the logbufsz value is too
small (thereby causing unnecessary I/Os during rollback), or too big (thereby
wasting valuable memory in the database heap).

� To determine if the value is too small, use the get snapshot for database
command to capture log reads information as shown in Figure 3-23 on
page 216.

Once again, it is important to gather average, maximum and minimum values
of monitored data over extended periods in order detect consistent trends.
Avoid making configuration changes before any such trends have been
identified.

The fields of interest are:

– Log pages read, which is a counter that identifies the number of log pages
read by the logger process.

– Log pages written, which is also a counter that identifies the number of
log pages written to disk by the logger. However, this is not equivalent to
the number of pages generated by the logger process. When log pages
are written to disk, the last page may not be full.

In such cases, the partial log page remains in the log buffer, and additional
log records are written to the page. Therefore, the same log page may be
written to disk by the logger process more than once.

Ideally, the Log pages read should be zero, or the ratio of Log pages read to
Log pages written should be very low. If not, consider increasing the
logbufsz and the value of the database configuration parameter dbheap by
the same amount.

� There is no simple way to determine if logbufsz is too big other than through
a trial and error method.

218 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

If Log pages read is almost consistently zero, or the ratio of Log pages read to
Log pages written is very low, consider reducing logbufsz in steps; that is,
measuring the indicators described at each step, until performance begins to
degrade. The optimal value for logbufsz is probably the value configured just
prior to the manifestation of performance degradation.

mincommit database configuration parameter
This parameter allows you to delay the writing of log records to disk until a
minimum number of commits have been performed. This delay can help reduce
the database manager overhead associated with writing log records; log I/Os will
occur less frequently and more log records are written each time the log buffer is
flushed.

Setting this parameter to a value other than 1 (which is the default) can improve
performance when you have multiple applications running against a database
and many commits are requested by the applications within a very short time
frame.

When commit grouping is in effect, application commit requests are held (wait)
until either one second has elapsed or the number of commit requests equals the
value of this parameter. Therefore, in lightly loaded systems with few commits, a
mincommit value greater than 1 can add a response time overhead of up to one
second to applications, which might be unacceptable for very short transactions.
In most cases, the default value should be adequate.

This parameter is configurable online.

Best practices
We recommend the following best practices for setting the mincommit parameter
value:

1. For high throughput/performance OLTP systems, consider raising the
mincommit value to other than 1 in very small increments, using trial and error
techniques to arrive at an optimal value.

For an existing system, you may determine the transaction throughput by
capturing database snapshots, as shown in Figure 3-25 on page 220, during
many representative measurement intervals spread over a few weeks to
determine consistent trends. Perform a db2 reset monitor for database
<db-alias> at the start of the measurement interval resets all the counters,
followed by a db2 get snapshot for <db-alias> at the end of the
measurement interval.

 Chapter 3. Application design and system performance considerations 219

Figure 3-25 Database snapshot showing the commits and rollback counts

The total number of transactions in the measurement interval is equal to
(Commit statements attempted + Rollback statements attempted).

The measurement interval is equal to (Last reset timestamp - Snapshot
timestamp).

The transaction throughput is the ratio of (Commit statements attempted +
Rollback statements attempted) and (Last reset timestamp - Snapshot
timestamp).

If mincommit is increased, consider increasing logbufsz as well to avoid
having a write of the buffer triggered prematurely by a log buffer full condition
instead of the mincommit threshold being tripped during these transaction
intensive periods. The logbufsz may be computed as follows:

logbufsz = mincommit x (average UOW log space used by a transaction)

Figure 3-22 on page 215 describes the method for determining the log space
consumed by a UOW.

2. For most other OLTP and BI systems, the default value of 1 should be
adequate.

Performance monitoring metrics
An optimal mincommit value for a given workload environment reduces the
number of writes to disk without imposing unacceptable overheads of response
time waits on critical transactions.

The database snapshot of snapshot monitor shown in Figure 3-23 on page 216
displays a count of the number of Log pages written; this field can be monitored
with different mincommit values over many representative measurement intervals
spread over a few weeks to detect consistent trends to identify the mincommit
value writing the fewest log pages. Simultaneously, response time

220 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

measurements of critical transactions for each of these mincommit values has to
be conducted as well.

The optimal mincommit value can be determined by juxtaposing the acceptable
response time measurements of critical transactions with the lowest log pages
written for the range of mincommit values configured. The optimal value is not
necessarily the one writing the fewest log records.

blk_log_dsk_full db cfg
This database configuration parameter can be set to prevent disk full errors from
causing DB2 to stop processing (ADM1826E) when it cannot create a new log file in
the active log directory. DB2 will attempt to create the log file at 5-minute
intervals until it succeeds; a message (ADM1828C) is written to the administration
notification log at each attempt.

Setting this parameter to YES causes all applications to appear to hang until the
log disk full condition is resolved, while a NO setting causes the transaction that
receives the log disk full error to fail and be rolled back. In some situations, the
database will come down if a transaction causes a log disk full error.

Best practices
For both OLTP and BI environments, the recommendation is to set
blk_log_dsk_full to YES so as to potentially avoid bringing down DB2 in the case
of a log disk full condition.

Performance monitoring metrics
Messages ADM1826E DB2 can not continue because the disk used for
logging is full and ADM1828C DB2 will attempt to create the log file
again in 5 minutes in the administration notification log indicate a log disk full
condition.

Impending log disk full conditions may also be monitored via the log filesystem
utilization health indicator of the Health Center, as shown in Figure 3-26 on
page 222.

Note: Transaction response time measurements have to be obtained using
appropriate non-DB2 tools.

 Chapter 3. Application design and system performance considerations 221

Figure 3-26 Log filesystem utilization health indicator in Health Center

Log filesystem utilization is measured as the percentage of space consumed in
the active log’s filesystem. Alerts can be set and generated if the amount of free
space is falls below a given threshold.

Log filesystem utilization is calculated as follows:

Log file utilization = (fs.log_fs_used / fs.log_fs_total)*100

where fs is the file system on which the log resides.

222 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

3.4.3 Monitor switch settings
DB2 provides a number of monitoring capabilities for problem diagnosis, as well
as tuning the performance of the system, as described in 2.6, “Performance
monitoring facilities” on page 66.

The information collected by the Snapshot Monitor of the Database System
Monitor in particular is controlled by a set of monitor switches defined in the
database manager configuration file; these switches and their default settings are
described in Table 3-11.

Table 3-11 Snapshot Monitor switches

Attention: There is a considerable amount of basic monitoring data that is not
under monitor switch control, and will always be collected regardless of switch
settings. Figure 3-27 on page 224 shows the monitoring data collected in
relation to monitor switch settings.

Monitor switch Default Description

DFT_MON_BUFPOOL OFF Buffer pool activity information, such as
number of reads and writes, and time
taken

DFT_MON_LOCK OFF Lock wait times and deadlock-related
information

DFT_MON_SORT OFF Sorting information, such as number of
heaps used and sort performance

DFT_MON_STMT OFF SQL statement information, such as
start/stop time, and statement
identification

DFT_MON_TABLE OFF Table activity information, such as rows
read and written

DFT_MON_TIMESTAM
P

ON Times and timestamp information

DFT_MON_UOW OFF Unit of work information, such as start/end
times and completion status

 Chapter 3. Application design and system performance considerations 223

Figure 3-27 DB2 Snapshot Monitor syntax and data collection

Refer to “Snapshot Monitor” on page 69 for more information about monitor
switches including setting them, taking snapshots, and other general
considerations.

Performance considerations
There are overheads associated with collecting Database System Monitor,
including collecting the data when the monitor switches are set, as well as the

P A
database A S P P A A A A

all applications A S P P A S A A A
bufferpools S

all A A S P P A S A A A A A P
database A S P P A A A A

bufferpools S
applications on A S P P A S A A A A

tables <database>

tablespaces A S
locks P S A

dynamic sql P

DB2 Snapshot Monitors

g
e
t

s
n
a
p
s
h
o
t

f
o
r

Tables

Tablespaces

M
em

ory pools

Bufferpool &
 I/O

Lock sum
m

ary

Lock detail

Sorts

Agents

C
PU

 utilization

Row
s

read/selected

Pkg/Sect/C
at

cache

Application state

SQ
L stm

t activity
Sel/ins/upd/del

Log usage

D
ynam

ic SQ
L

..and
some pretty
useful

things

database manager

...how to
get it

What you can get...

A - always collected S - collected only when monitor switch is ON
P - collected when switch is on, partially collected when switch is off

Note: Event Monitors are not affected by monitor switches in the same way as
snapshot monitoring applications. When an Event Monitor is defined, it
automatically turns ON the instance level monitor switches required by the
specific event types.

224 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

processing cost of frequently retrieving this information via the get snapshot and
flush event monitor commands.

Each monitor switch setting imposes a certain overhead that is dependent upon
the nature of the workload. The overheads are predominantly related to CPU
consumption rather than waits due to concurrency issues.

Typical overheads are as follows:

� All switches set - approximately 5 to 10%.

� DFT_MON_LOCK setting imposes an overhead of between 1 to 3%, depending
upon the frequency of snapshot requests.

� DFT_MON_STMT setting with dynamic SQL workloads imposes an overhead of
between 5 to 10%, proportional to statement throughput. Timestamp switch
setting needs to be considered in the overhead experienced.

� DFT_MON_TIMESTAMP setting (default is ON) overhead can becoming significant
when CPU utilization approaches 100%. When this setting is ON, the database
manager issues timestamp operating system calls when determining time or
timestamp-related monitor elements. When this setting is OFF, the overhead of
other switch settings is greatly reduced.

Best practices
We recommend the following best practices for monitor switch settings for routine
monitoring in OLTP and BI environments. Routine monitoring overhead should
typically not exceed 5%:

1. For OLTP environments:

– Set all switches to ON except DFT_MON_STMT and DFT_MON_LOCK.

– The frequency of snapshot requests should be low for lightly loaded
systems (say, every 60 seconds), and higher for highly dynamic systems
(say, every 15 seconds).

– Let DIAGLEVEL6 default to 3.

– Let the NOTIFYLEVEL7 default to 3.

Important: Since the overhead associated with each monitor switch setting is
completely dependent upon the workload and the frequency of snapshot
requests, you should determine the overheads in your specific environment
through careful measurements. The overheads listed earlier are merely
provided as guidelines to be used prior to detailed measurement in your
environment.

6 Specifies the type of diagnostic errors recorded in the db2diag.log

 Chapter 3. Application design and system performance considerations 225

– Let HEALTH_MON8 default to ON.

2. For BI environments:

– Set all switches to ON except DFT_MON_STMT, DFT_MON_UOW, and
DFT_MON_LOCK.

– Frequency of snapshot requests should be low for lightly loaded systems
(every 300 seconds), and higher for highly dynamic systems (every 60
seconds).

– Let DIAGLEVEL default to 3.

– Let the NOTIFYLEVEL default to 3.

– Let HEALTH_MON default to ON.

3.4.4 Connection considerations
When an application wants to perform requests against a database, it first has to
connect to the database before it can issue SQL requests against the data. A
connection involves associating a db2agent (and subagent db2agntp, if
appropriate) on the database server with the application that services requests
on behalf of the client. An agent facilitates the operations between the application
and the database. The flow of a typical application’s request is described in detail
in 2.3, “Single user transaction/query flow” on page 45.

Each agent operates with its own private memory and shares database manager
and database global resources such as the buffer pool with other agents. Being
an operating system process (thread), each agent may also consume disk space
(such as paging) and CPU cycles, and increases the potential for contention for
shared resources. In addition, the cost of creating and destroying processes may
affect the throughput of the overall system. Therefore, the workload and
environment of the database server needs to be managed to ensure
performance objectives are met.

7 Specifies the type of administration notification messages that are written to the administration
notification log.
8 Specifies whether the DB2 instance, its associated databases, and database objects should be
monitored using the Health Center’s health indicators.

Note: DIAGLEVEL, NOTIFYLEVEL, and HEALTH_MON are described in 2.6,
“Performance monitoring facilities” on page 66.

Attention: These setting should be evaluated in the context of overheads
incurred in your specific environment.

226 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

In order to manage the workload on a database server, and improve the
efficiency of DB2 agent processes, DB2 provides the following agent related
parameters to control resource consumption and contention on the database
server.

1. Database manager configuration parameters

– max_connections
– maxagents
– max_coordagents
– maxcagents
– num_poolagents
– num_initagents

2. Database configuration parameter

– maxappls

Each of these parameters are reviewed in turn, with a brief description of their
function, performance considerations associated with their use, best practices for
using them, and monitoring metrics for evaluating their effectiveness.

max_connections
This parameter controls the maximum number of applications that can be
connected to the DB2 instance (it was called max_logicagents in DB2 UDB
Version 7).

Typically, each application is assigned a coordinator agent. When the connection
concentrator is enabled, a logical agent entity is also created prior to the
coordinator agent being assigned as described in 2.3, “Single user
transaction/query flow” on page 45. The intent of the connection concentrator is
to reduce the server resources per client application to a point a DB2 Connect
gateway can handle more than tens of thousands of client connections. The
connection concentrator may improve performance since each EDU consumes
additional memory when the number of connections increase, and context
switching between agents results in additional overhead.

The default is -1 which corresponds to the value of the max_coordagents
parameter.

Performance considerations
If the max_connections parameter is set too low, then applications will fail with an
SQL1226N error code when they attempt to connect to the database resulting in
the perception of poor performance. On the other hand, setting it too high may
flood the database server with requests, causing resource utilization and
contention problems and also resulting in performance problems.

 Chapter 3. Application design and system performance considerations 227

Best practices
We recommend the following best practices for max_connections:

1. For 2-tier OLTP environments with many simultaneous user connections,
enable the connection concentrator by setting max_connections greater than
max_coordagents.

For 3-tier environments, the Web Application Server (such as WebSphere
Application Server) performs connection pooling, thereby eliminating the
need for enabling connection concentrator.

2. For other OLTP and BI environments, let this value default.

Monitoring performance metrics
An underconfigured value for this parameter will result in user complaints due to
applications receiving the SQL1226N return code due to connection failures. In
such cases, a trial and error method should be adopted to find the optimum value
for max_connections. Increase this value in incremental steps until the application
connection failures fall to an acceptable number without causing other
performance problems arising out of increased contention for shared resources.

An overconfigured value will only cause problems if other controlling parameters
such as maxagents, max_coordagents, and maxcagents do not exercise sufficient
controls on the number of processes allowed to consume resources. If they do
not, then the database server will likely get flooded with agent processes and
cause performance problems due to increased contention for scarce resources.

maxagents
This parameter indicates the maximum number of database manager agents,
whether coordinator agents or subagents, available at any given time to accept
application requests.

The maxagents parameter can be useful in memory-constrained environments to
limit the total memory usage of the database manager, because each additional
agent requires additional memory.

The default value is 200.

Performance considerations
An underconfigured value for this parameter will save memory but reduce the
throughput of a system with adequate system resources, while an overconfigured

Note: To specifically limit the number of coordinating agents, use the
max_coordagents parameter.

228 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

value in a resource-constrained system can result in significant contention for
system resources, resulting in poor performance.

Best practices
We recommend the following best practices for maxagents:

1. For new systems, use the Configuration Advisor as described in 2.5.1,
“Configuration Advisor and AUTOCONFIGURE” on page 54 to estimate the
value for maxagents.

2. For OLTP production environments, only a single database is typically
associated with an instance, and this parameter value should be equal to
maxappls.

If there is more than one concurrently active database associated with this
instance (the numdb database manager configuration parameter specifies the
maximum allowable number of databases, while the list db directory
command identifies the actual number of databases defined), then the safest
course for maxagents is to choose a value that is the product of numdb and the
largest value of maxappls of all the databases.

3. For BI environments, which may have the database manager configuration
parameter INTRA_PARALLEL enabled, this value should include the subagents
required to process application requests.

If more than one database is associated with an instance, then the value
computed above should be multiplied by the numdb value for this instance.

Performance monitoring metrics
Example 3-13 shows a select list of fields from the get snapshot for dbm
command.

Example 3-13 Database manager snapshot

db2 => get snapshot for dbm

 Database Manager Snapshot
......
Remote connections to db manager = 0
Remote connections executing in db manager = 0
Local connections = 4
Local connections executing in db manager = 0
Active local databases = 1

High water mark for agents registered = 5

Note: The assumption is that the database manager configuration
parameter INTRA_PARALLEL is disabled for OLTP environments.

 Chapter 3. Application design and system performance considerations 229

High water mark for agents waiting for a token = 0
Agents registered = 5
Agents waiting for a token = 0
Idle agents = 0
......
Agents assigned from pool = 2
Agents created from empty pool = 7
Agents stolen from another application = 0
High water mark for coordinating agents = 5
Max agents overflow = 0
Hash joins after heap threshold exceeded = 0

Total number of gateway connections = 0
Current number of gateway connections = 0
Gateway connections waiting for host reply = 0
Gateway connections waiting for client request = 0
Gateway connection pool agents stolen = 0
.....

The following fields are relevant to tuning the maxagents parameter.

� The High water mark for agents registered field is a water mark that
identifies the maximum number of agents (coordinator and subagents) at the
same time since it was started.

� The Max agents overflow field is a gauge that identifies the number of times
a request to create a new agent was received when the maxagents value had
already been reached.

If the High water mark for agents registered field value equals maxagents,
then maxagents is possibly under configured, and the Max agents overflow field
should be monitored for frequent non-zero values before raising the maxagents
value to increase system throughput in an environment that is not
resource-constrained.

Important: All the fields in the snapshot monitor, whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before reacting
with configuration changes.

Note that counter-type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

230 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

If the High water mark for agents registered field value is much lower than
maxagents, then maxagents is possibly overconfigured and could be reduced in a
resource-constrained environment.

max_coordagents
This parameter specifies the maximum number of coordinating agents that can
exist at one time on a DB2 instance. One coordinating agent is required for each
local or remote application that connects to the database or attaches9 to the
instance. This parameter can be used to control the load on the system.

The default value is -1, which corresponds to (maxagents - num_initagents)
when the database manager configuration parameter INTRA_PARALLEL is
enabled, and maxagents when INTRA_PARALLEL is disabled.

Performance considerations
Here again, an underconfigured value for this parameter will save memory but
reduce the throughput of a system with adequate system resources, while an
overconfigured value in a resource-constrained system can result in significant
contention for system resource, resulting in poor performance.

Best practices
We recommend the following best practices for max_coordagents:

1. For new systems, use the Configuration Advisor as described in 2.5.1,
“Configuration Advisor and AUTOCONFIGURE” on page 54 to estimate the
value for max_coordagents.

2. Assuming that the value of maxagents has been set correctly as discussed in
“maxagents” on page 228, let this parameter default for both OLTP and BI
environments.

Performance monitoring metrics
Referring back to Example 3-13 on page 229, the field of interest in tuning
max_coordagents is High water mark for coordinating agents, which is a
water mark for concurrently executing applications.

If the High water mark for coordinating agents field value equals
max_coordagents, then max_coordagents is possibly underconfigured, and its
value should be raised to increase system throughput in an environment that is
not resource-constrained. In a resource-constrained environment, consider
setting maxcagents to a lower value to reduce the load on the system instead of
lowering the value of max_coordagents.

9 Requests that require an instance attachment include CREATE DATABASE, DROP DATABASE,
and Database System Monitor commands,

 Chapter 3. Application design and system performance considerations 231

If the High water mark for coordinating agents field value is much lower than
max_coordagents, then max_coordagents is possibly overconfigured and could be
reduced in a resource-constrained environment.

maxcagents
This parameter limits the maximum number of database manager agents that
can be concurrently executing a database manager transaction. Whenever an
DB2 agent is assigned work, it attempts to obtain a token or permission to
process the transaction. This parameter controls the number of tokens available
to the database manager.

This parameter does not limit the number of applications that can have
connections to a database. It only limits the number of database manager agents
that can be processed concurrently by the database manager at any one time,
thereby limiting the usage of system resources during times of peak processing.

The default value is -1, which corresponds to the value of max_coordagents.

Performance considerations
This parameter is used to control the load on the system during periods of high
simultaneous application activity. This is particularly useful in CPU, disk, and
memory-constrained environments with a large number of connections, where
this parameter can limit high simultaneous activity that could cause excessive
operating system paging and performance degradation. However, setting this
parameter can result in long wait times and concurrency problems.

Best practices
We recommend the following best practices for maxcagents:

1. For both OLTP and BI environments, let the value default to max_coordagents.

Performance monitoring metrics

Example 3-13 on page 229 shows the following fields of interest for tuning
maxcagents:

Important: All the fields in the snapshot monitor whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before reacting
with configuration changes.

Note that counter-type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

232 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� Agents waiting for a token, which is a gauge for the number of agents
waiting to get a token to execute a database transaction.

� Remote connections executing in db manager, which is a gauge of the
number of remote applications that are currently connected to a database and
performing a unit of work.

� Local connections executing in db manager, which is a gauge of the
number of local applications that are currently connected to a database and
performing a unit of work

Consider the following approaches for tuning maxcagents:

� If the Agents waiting for a token field reports frequent non-zero values,
consider raising the value of maxcagents to increase system throughput in
non-resource constrained environments.

� Use benchmarking techniques to increase the value only if high performing,
high concurrency applications is causing problems to other users/applications
in the system and also when the system is paging high.

� Monitor (Remote connections executing in db manager + Local
connections executing in db manager) which is the number of tokens being
executed in the database manager to determine their value relative to
maxcagents, which can then be used to set its value.

num_poolagents
This parameter determines the maximum size of the idle agent pool. As
mentioned earlier, there is an overhead associated with destroying and
recreating an agent process whenever applications disconnect and connect to
the database. To minimize this overhead, DB2 keeps the idle agents in an agent
pool to be reused by other applications.

The processing involved when an agent finishes processing a request depends
upon whether connection concentrator is disabled or not as follows:

� With connection concentrator disabled, if more agents are created than
indicated by num_poolagents, then agents will be terminated when they finish
executing their current request instead of returning them to the pool.

� With connection concentrator enabled, num_poolagents will be used as a
guideline for how large the agent pool will be when the system work load is
low. A database agent will always be returned to the pool, no matter what the
value of this parameter is. Based on the system load and the time agents
remain idle in the pool, the logical agent scheduler may terminate as many of
them as necessary to reduce the size of the idle pool to this parameter value.

The maximum agent pool size is equal to maxagents.

 Chapter 3. Application design and system performance considerations 233

The default value is -1, which with local and remote clients corresponds the
larger of the following:

((maxagents/50) x max_querydegree) or (maxagents - max_coordagents)

If num_poolagents is zero, agents will be created as needed, and may be
terminated when they finish executing their current request.

Performance considerations
An underconfigured value for this parameter will result in agents being
terminated, which could result in new application requests having to incur the
cost of agent creation and thereby incur performance degradation. An
overconfigured value results in wasted memory resources.

Best practices
We recommend the following best practices for tuning num_poolagents:

1. For OLTP environments, the objective should be to stay connected for optimal
performance. If connections are constantly created and destroyed, a larger
agent pool should be defined to avoid the costs associated with the frequent
creation and termination of agents.

2. BI environments tend to have few concurrent queries, and each query tends
to be long running and therefore be less impacted by the cost of agent
creation. Set num_poolagents to a smaller value than in the case of OLTP
environments to avoid having an agent pool that is full of idle agents.

Performance monitoring metrics
Figure 3-28 lists selected fields from the get snapshot for dbm command.

Figure 3-28 Database manager snapshot on Agent information

234 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The following fields are of interest for tuning max_poolagents:

� Idle agents is a gauge of the number of agents that are currently unassigned
to an application and are therefore “idle”.

� Agents assigned from pool is a counter that records the number of agents
assigned from the agent pool.

� Agents created from empty pool is a counter that records the number of
agents created because the agent pool was empty. It includes the number of
agents started at DB2 startup (num_initagents).

Consider modifying the value of num_poolagents in the following cases:

� If the Idle agents field is consistently zero or very low, increase the value of
num_poolagents to minimize agent creation and destruction costs.

If the Idle agents field is consistently high, decrease the value of
num_poolagents to avoid wastage of system resources.

� The ratio (Agents created from empty pool/Agents assigned from pool) is a
measure of how often an agent must be created because the pool is empty.

If this ratio is consistently high, then increase the value of num_poolagents to
minimize agent creation and destruction costs.

If the ratio is consistently low, then decrease the value of num_poolagents to
avoid wastage of system resources.

num_initagents
This parameter determines the initial number of idle agents that are created in
the agent pool (as defined by num_poolagents) at db2start time. When the
database manager is started, a pool of worker agents is created based on this
value, which speeds up the performance for initial queries as they will not incur
the cost of creating the agent. The worker agents all begin as idle agents.

The default value is zero.

Important: All the fields in the snapshot monitor, whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before reacting
with configuration changes.

Note that counter-type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

 Chapter 3. Application design and system performance considerations 235

Performance considerations
The wait time for agent creation is reduced when num_initagents is greater than
zero. As mentioned earlier, agents consume memory and should not be
overconfigured.

Best practices
We recommend the following best practices for tuning num_initagents:

1. For OLTP environments, the objective should be to avoid the costs associated
with the initial creation of agents. num_initagents should therefore be equal
to the expected average concurrent workload (DB2 agents and subagents).
Ensure that it is less than num_poolagents so that these agents are not
terminated when they have finished their work.

2. BI environments tend to have few concurrent queries and should therefore
have a small value for num_initagents.

Performance monitoring metrics
The same performance monitoring metrics as described in “num_poolagents” on
page 233 apply here as well.

maxappls
This parameter specifies the maximum number of concurrent applications that
can be connected (both local and remote) to a database. Since each application
that attaches to a database causes some private memory to be allocated,
allowing a larger number of concurrent applications will potentially use more
memory.

When an application attempts to connect to a database, but maxappls has
already been reached, an error (SQL1040N) is returned to the application
indicating that the maximum number of applications have been connected to the
database.

Setting maxappls to AUTOMATIC has the effect of allowing any number of
connected applications. DB2 will dynamically allocate the resources it needs to
support new applications.

The default value is AUTOMATIC.

Performance considerations
Setting maxappls to AUTOMATIC can lead to an over commitment resources in
constrained environments, resulting in significant performance degradation.
Setting maxappls to a value enables you to control the workload and resource
consumption in resource-constrained environments.

236 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The setting of maxappls has an impact on the size of the package cache
(pckcachesz) and the catalog cache (catalogcache_sz) if their settings are
allowed to default as follows:

� Package cache defaults to 4 times maxappls

� Catalog cache defaults to 8 times maxappls

maxappls is indirectly dependent on maxagents and max_coordagents. An
application can only connect if there is a DB2 agent available. No new
applications can be started if maxagents or max_coordagents has been reached.

Best practices
We recommend the following best practices for tuning maxappls:

1. For an existing system, consider using the Configuration Advisor.

2. Let it default to AUTOMATIC unless you have a very resource-constrained
environment.

3. When setting this parameter to a value other than AUTOMATIC, choose a value
that is equal to or greater than the sum of concurrent connected applications
plus the number of these same applications that may be concurrently in the
process of completing a two-phase commit or rollback. Then add to this sum
the anticipated number of indoubt transactions that might exist at any one
time.

Performance monitoring metrics
Figure 3-29 lists selected fields of the get snapshot for database command.

Figure 3-29 Database snapshot - applications connected currently

Important: All the fields in the snapshot monitor, whether they are water
marks, counters, or gauges, should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before reacting
with configuration changes.

Note that counter type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

 Chapter 3. Application design and system performance considerations 237

The field of interest for tuning maxappls is Applications connected currently,
which is a gauge that indicates the number of applications that are currently
connected to the database.

Use this value to set maxappls to a specific value to control the consumption of
system resources in resource-constrained environments.

3.4.5 Buffer pool considerations
Buffer pools tend to be one of the major components that can have the most
dramatic impact on performance, since they have the potential to reduce I/Os. A
buffer pool improves database system performance by allowing data to be
accessed from memory instead of from disk. Because memory access is much
faster than disk access, the less often the database manager needs to read from
or write to a disk, the better the performance.

A buffer pool is memory used to cache both user and system catalog table and
index pages as they are being read from disk, or being modified. A buffer pool is
also used as overflow for sorts.

In the following subsections, we discuss the following topics:

� Buffer pool flow
� Main characteristics of buffer pools
� Performance considerations
� Best practices
� Performance monitoring metrics

Buffer pool flow
The general processing flow with buffer pools is shown in Figure 3-30 on
page 239.

Note: Large objects (LOBs) and long fields (LONG VARCHAR) data are not
manipulated in the buffer pool.

238 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-30 Buffer pool flow

The following events may occur with buffer pools during normal processing:

1. An application (db2agent or db2agntp) requests data from the buffer pool,
which returns the data to the application if it is found in a page in the buffer
pool, and since there is no I/O involved, access is very fast. If the data is not
found in a page in the buffer pool, the buffer pool manager retrieves the
appropriate page from disk and places it into the buffer pool for the application
to retrieve the data. While this I/O is in progress, the application waits, which
results in slower access from the application’s point of view.

When the application performs an update to data, a similar process is
involved, with access being faster if the required pages are in the buffer pool.

2. Once the pages are in the buffer pool, they remain there until they are
replaced.

3. The database manager also attempts to bring pages into the buffer pool in
anticipation of their being used by an application using certain processes
called prefetchers (db2pfchr).

4. DB2 identifies pages in the buffer pool as being in one of the following states:

– In use pages are currently being read or updated. They can be read but
not updated by other agents.

– Dirty pages contain data that has been changed but has not yet been
written to disk.

Log
Disks

db2loggr
 d2loggw

Buffer Pool(s)Log Buffer

Logging
Subsystem

Activedb2agntp

db2agent

Prefetchers
num_ioservers

Page Cleaners
num_iocleaners
chngpgs_thresh

softmax

Pa
ral

lel
,

Big
-bl

oc
k

Rea
d R

eq
ue

sts

Parallel, Page

Write Requests

Coordinator Agents

Subagents

Data Disks

Async I/O
Prefetch Requests

Write

Log Requests

 Chapter 3. Application design and system performance considerations 239

– Clean pages are changed pages that have been written to disk. However,
this page remains in the buffer pool until its space is needed for new
pages. Clean pages can also be migrated to an associated extended
storage cache if one is defined.

DB2 manages pages in the buffer pool in such a way that it attempts to:

– Ensure that pages required by an application are brought in to the buffer
pool before they are requested by an application using the prefetchers
(db2pfchr).

Prefetching involves retrieving one or more pages from disk in the
expectation that they will be required by an application. Prefetching index
and data pages into the buffer pool can help improve performance by
reducing the I/O wait time. In addition, parallel I/O enhances prefetching
efficiency as described in “Prefetch size for the table space” on page 152.

There are two categories of prefetching: sequential prefetch, and list
(sequential) prefetch, which we explain as follows:

• Sequential prefetch, which reads consecutive pages into the buffer
pool, using a single I/O operation before the pages are required by the
application.

Prefetching starts when the database manager determines that
sequential I/O is appropriate, and that prefetching might improve
performance. In cases such as table scans and table sorts, the
database manager can easily determine that sequential prefetch will
improve I/O performance. In these cases, the database manager
automatically starts sequential prefetch.

For example the following statement, which probably requires a table
scan, would be a good candidate for sequential prefetch:

SELECT NAME FROM EMPLOYEE

In some cases it is not immediately obvious that sequential prefetch will
improve performance. In these cases, the database manager can
monitor I/O and activate prefetching if sequential page reading is
occurring. In this case, prefetching is activated and deactivated by the
database manager as appropriate. This type of sequential prefetch is
known as sequential detection and applies to both index and data
pages. The seqdetect database configuration parameter (default is
enabled) to control whether the database manager performs sequential
detection or not.

Note: The number of prefetchers is controlled by the num_ioservers
database configuration parameter.

240 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

For example, with sequential detection enabled, the following SQL
statement might benefit from sequential prefetch:

SELECT NAME FROM EMPLOYEE
WHERE EMPNO BETWEEN 100 AND 3000

In this example, the optimizer might have started to scan the table
using an index on the EMPNO column. If the table is highly clustered
with respect to this index, then the data-page reads will be almost
sequential and prefetching might improve performance, so data-page
prefetch will occur.

Index-page prefetch might also occur in this example. If many index
pages must be examined and the database manager detects that
sequential page reading of the index pages is occurring, then
index-page prefetching occurs.

• List (sequential) prefetch prefetches a set of non-consecutive data
pages efficiently.

These two methods of reading data pages are in addition to a normal
read. A normal read is used when only one or a few consecutive pages are
retrieved. During a normal read, one page of data is transferred.

– Ensure that there are always clean pages available in the buffer pool for
accommodating new incoming pages, by cleaning pages on a regular
basis using the page cleaners (db2pclnr). Page cleaners perform I/O as
background processes.

Page cleaners are triggered by the following:

• When the percentage of space occupied by changed pages in any one
buffer pool exceeds the value specified by the chngpgs_thresh
database configuration parameter; it specifies the percentage of
changed pages (default is 60) in the buffer pool at which the
asynchronous page cleaners will be started if they are not currently
active. This is also called a dirty page threshold.

When the page cleaners are triggered, all page cleaners are triggered
at the same time. Each of these page cleaners will collect a fixed
number of dirty pages and start writing them out, one page at a time,
until they are all flushed to disk. After a page cleaner has completed
flushing its assigned dirty pages, it repeats the process if there are

Note: The number of page cleaners is controlled by the num_iocleaners
database configuration parameter.

 Chapter 3. Application design and system performance considerations 241

additional dirty pages to flush; otherwise, it becomes dormant until the
next page cleaner trigger.

• When the softmax database configuration parameter limit is exceeded;
this specifies a percentage of the size of one primary log file. The
default is 100, which means that the database manager will try to keep
the number of logs that need to be recovered to one (1) and is used to
influence the number of logs required for crash recovery by triggering
the page cleaners to ensure that pages older than the specified
recovery window are already written to disk. This is also called an LSN
Gap threshold.

• When a page needs to be stolen synchronously by an application; the
application waits while the dirty page is written out to disk by the agent
and the required new page is brought in its spot. This is also called
dirty page steals.

Main characteristics of buffer pools
The main characteristics of buffer pools briefly covered here include:

Memory allocation

� Dynamic buffer pools
� Multiple buffer pools of varying page sizes
� Hidden buffer pools
� Block-based buffer pools
� Windows 2000 Address Windowing Extensions (AWE)
� Extended storage cache on 32-bit platforms
� Buffer pool overhead

Memory allocation
Memory is allocated for buffer pools when a database is activated via the
ACTIVATE DATABASE command, or when an application first connects to the
database. Buffer pools are deallocated when all applications disconnect from the
database if the database was not explicitly activated; otherwise, an explicit
DEACTIVATE DATABASE or db2stop command must be used to shut down the
database.

Dynamic buffer pools
Buffer pools can be created, dropped, or resized while the database manager is
running. The IMMEDIATE keyword in the ALTER BUFFERPOOL and CREATE
BUFFERPOOL statement allows increases in the size of the buffer pool to be

Attention: chngpgs_thresh is a database configuration parameter,
not a buffer pool parameter.

242 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

effective immediately when memory is available; otherwise, it becomes effective
after all the applications have disconnected from the database and the database
is reactivated. If you decrease the size of the buffer pool, memory is deallocated
at commit time.

Multiple buffer pools of varying page sizes
Multiple buffer pool sizes are supported of the same and varying page sizes such
as 4 K, 8 K, 16 K and 32 K.

� A default buffer pool named IBMDEFAULTBP with a 4 K page size is created at
database creation. On UNIX, the default size is 1000 pages; on Windows, the
default size is 250 pages.

Hidden buffer pools
DB2 creates four buffer pools of 16 pages, each with a page size of 4 K, 8 K,
16 K and 32K when the first client connects to the database.

These buffer pools are used by DB2 in the following circumstances:

� When a buffer pool of the required page size is inactive because not enough
memory was available to create it after a CREATE BUFFERPOOL statement was
executed with the IMMEDIATE keyword. A message is written to the
administration notification log. If necessary, table spaces are remapped to a
hidden buffer pool.

Performance is likely to be significantly impacted when this occurs because of
the limited size of these buffer pools, but it provides a fail-safe mechanism.

� When the buffer pools cannot be brought up during a database connect due
to conditions such as an out-of-memory condition. An SQL1478W (SQLSTATE
01626) message is returned to the application, and a message is also written
to the administration notification log.

Note: Dynamic buffer pool sizes are ideal for varying buffer pool
configurations between batch, OLTP and decision support workloads during
different processing windows. This enables optimal buffer pool configurations
for each processing window.

Note: The maximum size of a buffer pool depends upon the specific
platform, and whether it is a 32-bit or 64-bit implementation. Very large
buffer pools can be defined on 64-bit platforms.

64-bit implementations are not constrained by virtual memory addressing
limitations and can directly exploit machines with very large real memories.

 Chapter 3. Application design and system performance considerations 243

Here again DB2 performance is likely to be significantly impacted by this
fail-safe mechanism.

Block-based buffer pools
DB2 supports the concept of block-based buffer pool, which provides
block-based I/O for buffer pools using NUMBLOCKPAGES and BLOCKSIZE parameters
in the CREATE BUFFERPOOL statement. Block-based buffer pools greatly improve
the performance of sequential prefetching.

Prefetching pages from disk is expensive because of I/O overhead. Throughput
can be significantly improved if processing is overlapped with I/O. Most platforms
provide high-performance primitives that read contiguous pages from disk into
non-contiguous portions of memory. These primitives are usually called
“scattered read” or “vectored I/O”. On some platforms, performance of these
primitives cannot compete with doing I/O in large block sizes.

Sequential prefetching can be enhanced if contiguous pages can be read from
disk into contiguous pages within a buffer pool, and a block-based buffer pool
provides this capability. A block-based buffer pool consists of both a page area
and a block area, as described here:

� The page area is required for non-sequential prefetching workloads.

� The block area consist of blocks where each block contains a specified
number of contiguous pages called the block size as defined by BLOCKSIZE.

Attention: These buffer pools are hidden from the user, and are not
present in the system catalogs or in the buffer pool system files. They
cannot be used or altered directly.

However, the DB2_OVERRIDE_BPF environment registry variable can be set
to change the default value of 16 pages for these buffer pools. Should even
a minimal buffer pool of 16 pages not be brought up by the database
manager (see the administration notification log for messages), then the
user can try again after specifying a smaller number of pages using this
environment variable.

The memory constraint could arise either because of a real memory
shortage (which is rare), or because of the attempt by the database
manager to allocate large, inaccurately sized buffer pools. This value, if
set, overrides the current buffer pool size.

Note: By default, buffer pools are page-based, which means that contiguous
pages on disk are prefetched into non-contiguous pages in memory.

244 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The size of this block-based area is defined by the NUMBLOCKPAGES parameter.
This area of the buffer pool will be used exclusively for sequential prefetching.

Block-based buffer pools have the following limitations:

� A buffer pool cannot be made block-based and use extended storage
simultaneously.

� Block-based I/O and AWE support cannot be used by a buffer pool
simultaneously. AWE support takes precedence over block-based I/O support
when both are enabled for a given buffer pool. In this situation, the
block-based I/O support is disabled for the buffer pool. It is re-enabled when
the AWE support is disabled.

Windows 2000 Address Windowing Extensions (AWE)
Windows 2000 AWE is a set of memory management extensions that allow
applications to manipulate memory above certain limits, which depend on the
process model of the application.

The following limitations apply if AWE support is enabled:

� Extended storage can not be used for any of the buffer pools in the database.

� Buffer pools referenced with this registry variable must already exist in
SYSCAT.SYSBUFFERPOOLS.

� Block-based I/O and AWE support cannot be used by a buffer pool
simultaneously. AWE support takes precedence over block-based I/O support
when both are enabled for a given buffer pool. In this situation, the
block-based I/O support is disabled for the buffer pool. It is re-enabled when
the AWE support is disabled.

Extended storage cache on 32-bit platforms
DB2 supports the concept of extended storage cache on 32-bit platforms that
have large quantities of real memory (>> 4 GB). Since 32-bit can only directly
access 4 GB of memory, the additional real memory can be configured beyond
the virtual addressable memory of 4 GB as an extended storage cache.

Note: A value of zero for NUMBLOCKPAGES disables block I/O.

Attention: The strong recommendation is to implement 64-bit DB2 to fully
exploit large memories that are becoming increasingly common in Windows
environments, rather than use Windows 2000 AWE with its limitations.

 Chapter 3. Application design and system performance considerations 245

A key limitation of extended storage cache is that any real addressable memory
defined as an extended storage cache can no longer be used for other purposes,
such as a JFS-cache or as process private address space. More system paging
might occur by allocating real addressable memory to an extended storage
cache, which is extremely undesirable for system performance.

Buffer pool overhead
DB2 incurs an overhead of about one page in database shared memory for every
30 buffer pool pages. This is a change from previous versions of DB2, where the
overhead came out of the database heap (as specified by the dbheap database
configuration parameter) and required resizing for very large buffer pools.

To reduce the necessity of increasing the size of the dbheap database
configuration parameter when buffer pool sizes increase, nearly all buffer pool
memory, which includes page descriptors, buffer pool descriptors, and the hash
tables, comes out of the database shared memory set and is sized automatically.

Performance considerations
In general, the more memory that is made available for buffer pools without
incurring operating system paging, the better the performance.

Large buffer pools provide the following advantages:

1. They enable frequently requested data pages to be kept in the buffer pool,
which allows quicker access. Fewer I/O operations can reduce I/O contention,
thereby providing better response times and reducing the processor resource
needed for I/O operations.

2. They provide the opportunity to achieve higher transaction rates with the
same response time.

3. They reduce I/O contention for frequently used disk storage devices such as
frequently referenced user tables and indexes. Sorts required by queries also
benefit from reduced I/O contention on the disk storage devices that contain
the temporary table spaces.

The following decisions need to be made regarding tuning buffer pools:

� Single or multiple buffer pools
� Size of the buffer pool
� Buffer pool assignment with multiple buffer pools
� Block-based buffer pools

Attention: Here again, the very strong recommendation is to implement 64-bit
DB2 to fully exploit the large memories available, without suffering the
limitations of extended storage cache.

246 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� chngpgs_thresh and num_iocleaners considerations
� num_ioservers considerations

Each of these considerations are covered as follows:

Single or multiple buffer pools
With 32-bit versions of DB2, there is a limit on the total size of the buffer pools
that can be defined regardless of the available real memory. No such restrictions
apply to 64-bit versions of DB2 where real memory limits (causing operating
system paging) are most likely the problem with defining large buffer pools.

The advantages of a single buffer pool are as follows:

� It exploits DB2’s efficient page management algorithm to maintain a high
buffer hit ratio by keeping the most active pages and important pages such as
index pages in memory, while migrating less frequently used pages to disk.

� It requires no tuning once its size is chosen.

The main disadvantage of a single buffer pool is that you cannot discriminate in
favor of table spaces requiring high priority access with potentially low activity
access rates, when there are lower priority table spaces with higher activity rates
using the same buffer pool.

The advantages and disadvantages of multiple buffer pools are the opposite of
those for a single buffer pool. Multiple buffer pools offer greater flexibility for
prioritizing the I/O performance of different table spaces, but require constant
monitoring and tuning to keep them performing optimally.

Size of the buffer pool
The size of the buffer pool is dependent upon the nature of the application
workload and the size of the table spaces.

� Smaller buffer pools can be used for data accessed by applications that are
seldom used, especially for an application that requires very random access
into a very large table. In such a case, data need not be kept in the buffer pool
for longer than a single query. It is better to keep a small buffer pool for this
data, and free the extra memory for other uses, such as for other buffer pools.
Another example of tables that could have small buffer pools are those that
are always appended to, such as audit trails and logs.

Note: When table spaces have different page sizes, a separate buffer pool
must be defined for each page size. Apportioning the total memory available
for buffer pools between the various page sizes implicitly involves a degree of
prioritization.

 Chapter 3. Application design and system performance considerations 247

� Larger buffer pools are beneficial when they include small tables that have
data accessed repeatedly and frequently. If this buffer pool is sized
appropriately, the pages of small tables have a better chance of being found,
contributing to a lower response time and a lower transaction cost.

Buffer pool assignment with multiple buffer pools
The purpose of defining multiple buffer pools is to discriminate in favor of higher
priority table spaces even when they do not necessarily have high activity against
them. It is therefore critical to isolate table spaces in buffer pools in a way that
their individual activity rates do not interfere or contend with each other.

Typically:

� Separate high activity, high priority table spaces from other high activity, high
priority table spaces.

� Separate low activity, high priority table spaces from high activity, low priority
table spaces.

� Frequently updated tables and indexes should be kept separate from tables
and indexes that are frequently queried but infrequently updated.

� Indexes may be separated from data (this is only possible for DMS table
spaces).

� Temporary table spaces should be separated from tables and indexes for
workloads that are sort-intensive.

� Low activity table spaces can share the same buffer pool.

Block-based buffer pools
The optimal usage of a block-based buffer pool depends upon the number of
pages reserved for the block (NUMBLOCKPAGES) area and the specified block size
(BLOCKSIZE). The block size is the granularity at which the prefetchers (db2pfchr)

Note: System paging generally has a greater negative impact on performance
than database I/Os. Therefore, it is better to minimize system paging by
defining smaller buffer pools, instead of defining larger buffer pools when there
is insufficient real memory to back up the larger allocation.

Attention: It is very important to balance the size of buffer pools with sort
heap storage allocation in real memory-constrained environments. For BI
environments in particular, it is very desirable to allocate a large sort heap size
to improve the performance of sorts, which may leave less real memory
available for defining large buffer pools.

248 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

doing sequential prefetching consider doing block-based I/O. The extent is the
granularity at which table spaces are striped across containers. Because multiple
table spaces with different extent sizes can be bound to a buffer pool defined with
the same block size, consider how the extent size and the block size interact for
efficient use of buffer pool memory.

Buffer pool memory can be wasted in the following circumstances:

� If the extent size (which determines the prefetch request size) is smaller than
the BLOCKSIZE, or not an integral multiple of the BLOCKSIZE specified for the
buffer pool.

� If some pages requested in the prefetch request are already present in the
page area of the buffer pool.

The prefetcher (db2pfchr) allows some wasted pages (up to 50%) in each buffer
pool block, but if too much of a block would be wasted, the prefetcher (db2pfchr)
does non-block-based prefetching into the page area of the buffer pool. This is
not optimal performance.

For optimal performance, bind table spaces of the same extent size to a buffer
pool with a block size that equals the table space extent size. Good performance
can be achieved if the extent size is larger than the block size, but not when the
extent size is smaller than the block size. If there are multiple table spaces with
different extent sizes associated with this buffer pool, choose a block size that
matches the smallest extent size of all the table spaces associated with this
buffer pool.

chngpgs_thresh and num_iocleaners considerations
When the chngpgs_thresh threshold is triggered, all page cleaners are triggered
at the same time.

For workloads that have high update activity, such as OLTP environments, the
setting of this threshold can have a significant performance impact, as follows:

� A high threshold value can have a significant negative performance impact. A
high threshold causes the page cleaners to be dormant for a long time while
the number of dirty pages accumulate. When the threshold is finally triggered,
the starting of all the page cleaners and the large number of accumulated
dirty pages which would need to be flushed to disk, could result in a
significant system impact due to the flood of buffer writes.

Attention: Block-based buffer pools are intended for sequential prefetching. If
applications do not use sequential prefetching, the block area of the buffer
pool is wasted.

 Chapter 3. Application design and system performance considerations 249

� If the threshold is set too low, then unnecessary buffer writes would cause
disk contention as well as CPU utilization due to starting of the page cleaners,
thereby impacting overall system performance.

In general, it is desirable to smooth out the execution of the page cleaners and
writing of dirty pages to disk.

num_ioservers considerations
The I/O servers (prefetchers) are used on behalf of the database agents to
perform prefetch I/O and asynchronous I/O by applications and utilities such as
backup and restore. The prefetch manager assigns the prefetch requests to the
prefetchers. There is one prefetch queue that is monitored by the prefetch
manager and shared between all configured prefetchers.

A prefetch request is normally broken into smaller I/O requests, with the number
of I/O requests being determined by number of containers in the table space.

To ensure prefetchers do not read data into the buffer pool and overwrite pages
before they are accessed, the amount of prefetching is controlled by the size of
the buffer pool, the prefetch size, and the access plan generated by the optimizer.

A large number of prefetchers can result in excessive prefetching, and this may
cause overwriting of pages in the buffer pool that were to be accessed by other
applications. These overwritten pages will cause applications to suffer a buffer-hit
miss, resulting in synchronous I/O. Excessive prefetching may also waste space
in the buffer pool if the application does not process all the pages prefetched.

A small number of prefetchers can result in high prefetch times, thus causing the
DB2 agents to perform synchronous I/O themselves.

Best practices
We recommend the following best practices for tuning buffer pools and setting of
configuration parameters chngpgs_thresh, num_iocleaners and num_ioservers:

Note: DB2 limits the percent of a buffer pool that can contain prefetched
pages to ensure that prefetching does not swamp the entire buffer pool.

Attention: It is better to overestimate the number of I/O servers than to
underestimate. If you specify extra I/O servers, these servers are not used,
and their memory pages are paged out. As a result, performance does not
suffer. Each I/O server process is numbered. The database manager always
uses the lowest numbered process, so some of the upper-numbered
processes might never be used

250 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

1. For OLTP environments, typically allocate about 75% to 80% of the memory
installed on the database server to buffer pools—assuming a dedicated
database server.

If not, allocate 75% to 80% of usable memory to DB2 (server memory
configuration minus operating system and any other system requirements) to
the buffer pool(s).

As mentioned earlier, it is very important to balance the size of buffer pools
with sort heap storage allocation in real memory-constrained environments.

2. For BI environments, allocate about 50% to the buffer pools and the rest for
sorts. It is very desirable to allocate a large sort heap size to improve the
performance of sorts, which may leave less real memory available for defining
large buffer pools.

3. Buffer pool hit ratios measure the efficiency of a buffer pool, and should be as
high as possible for a given workload. It reflects how frequently the request for
index or data pages is handled directly from the buffer pool instead of being
accessed from disk.

Buffer pool hit ratios may be computed for data plus indexes, data only, or
indexes only, as follows:

In particular, index hit ratios should typically be higher than data hit ratios for
both OLTP and BI workloads.

Determining the optimal buffer pool size for a given workload is a trial and
error exercise based on hit ratios and user response time measurements, as
shown in Figure 3-31 on page 252.

Note: 64-bit DB2 has virtually no practical limit on the size of buffer pools.

Buffer Pool Hit Ratio for data = (1 - ((buffer pool data physical
reads)/(buffer pool data logical reads))) * 100

Buffer Pool Hit Ratio for indexes = (1 - ((buffer pool index physical
reads)/(buffer pool index logical reads))) * 100

Buffer Pool Hit Ratio for data and indexes = (1 - ((buffer pool data
physical reads + buffer pool index physical reads)/(buffer pool data
logical reads + buffer pool index logical reads))) * 100

 Chapter 3. Application design and system performance considerations 251

Figure 3-31 The number of buffers, hit ratios, response times, and paging

4. For OLTP environments:

– Hit ratios above 95% are achievable, but anything above 80% is good.

– Multiple buffer pools recommended:

• Separate indexes and tables into different buffer pools (this requires the
table spaces to be DMS table spaces).

Important: Just computing the buffer hit ratio without taking into account the
effect of system paging can lead to a spurious optimal value for the number of
buffers. The actual optimal value is when the response times are best with low
system paging, even though the hit ratios are not as high.

252 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

• Temporary table spaces should be assigned to a separate buffer pool
to improve sort and global temporary table performance.

• Journals and history tables where rows are appended to the end of the
table can have their table spaces mapped to smaller buffer pools to
reduce wasted memory.

• Separate high activity, high priority table spaces from other high
activity, high priority table spaces.

• Separate low activity, high priority table spaces from high activity, low
priority table spaces.

• Frequently updated tables and indexes should be kept separate from
tables and indexes that are frequently queried but infrequently updated.

• Low activity table spaces can share the same buffer pool.

– Extended storage is not appropriate for 64-bit DB2, and probably not
appropriate if the system is CPU-bound.

– Block-based buffer pools are not appropriate unless there is reasonable
sequential prefetching, in which case a small percentage (between 10%
and 20%) of the buffer pool pages (NUMBLOCKPAGES) should be reserved for
prefetching, and the block size should be equal to the table space extent
size. If there are multiple table spaces with different extent sizes
associated with this buffer pool, choose a block size that matches the
smallest extent size of all the table spaces associated with this buffer pool.

– Reduce the default value of chngpgs_thresh to 20 - 30% to smooth out the
writing of dirty pages to disk, and have dirty pages written out
asynchronously due to the chngpgs_thresh threshold trigger, rather than
LSN gaps or dirty pages stolen triggers.

– Set num_iocleaners to be between one and the number of physical
storage devices used for the database. Environments with high update
transaction rates and a large number of buffer pools require more page
cleaners to be configured. The number of page cleaners should generally
not exceed the number of CPUs in the system.

– Let num_ioservers default, but monitor and adjust as necessary.

� For BI environments:

– The ratio of asynchronous reads-to-synchronous reads is much more
important in BI environments than the hit ratio because of the large
volumes of data being processed resulting in poor hit ratios. The objective
is to strive for almost 100% asynchronous reads and minimal synchronous
reads by the DB2 agents.

– Multiple buffer pools recommended for indexes and temporary table
spaces, but not for data:

 Chapter 3. Application design and system performance considerations 253

• Separate indexes and tables into different buffer pools (this requires the
table spaces to be DMS table spaces).

• Temporary table spaces should be assigned to a separate buffer pool
to improve sort-intensive queries of such environments.

• Combine table spaces with the same page size into one buffer pool for
optimal data hit ratios.

– Extended storage may be appropriate since BI environments tend to be
I/O-bound (unless 64-bit version DB2 is used).

– Block-based buffer pools are highly recommended since BI environments
tend to have significant prefetching activity. A high percentage (80% or
more) of pages in the buffer pool can be reserved for prefetching
(NUMBLOCKPAGES), and the block size should be equal to the extent size of
the table space. If there are multiple table spaces with different extent
sizes associated with this buffer pool, choose a block size that matches
the smallest extent size of all the table spaces associated with this buffer
pool.

– Let chngpgs_thresh default to 60% since BI environments are
predominantly read only and accumulated dirty page writes should not be
a problem.

– Let num_iocleaners default. The number of page cleaners should
generally not exceed the number of CPUs in the system.

– Increase num_ioservers to the number of disks in the system for maximum
I/O parallelism; if there are too many disks, use a trial and error
mechanism to determine the optimal number.

Performance monitoring metrics
Metrics to monitor may be obtained from the snapshot monitor, as shown in
Figure 3-32 on page 255 and Figure 3-33 on page 255 and Figure 3-34 on
page 256.

Select fields are shown from the results of the get snapshot for bufferpools on
<database_alias> command in each case.

� Figure 3-32 on page 255 is used to monitor the buffer pool hit ratios and page
cleaning considerations.

� Figure 3-33 on page 255 is used to monitor the efficacy of block-based buffer
pools.

� Figure 3-34 on page 256 is used to monitor the efficacy of prefetching.

254 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-32 Output of buffer pool snapshot on the database and calculation

Figure 3-33 Buffer pool snapshot showing Block I/O value

 Chapter 3. Application design and system performance considerations 255

Figure 3-34 Database snapshot showing prefetch details and calculation

The fields of interest in all the figures for tuning the buffer pool, chngpgs_thresh,
num_iocleaners, num_ioservers are as follows:

� Buffer pool data logical reads is a counter that records the number of
logical read requests for data pages that have gone through the buffer pool.

� Buffer pool data physical reads is a counter that records the number of
read requests that required I/O to get data pages into the buffer pool.

� Asynchronous pool data page reads is a counter that records the number of
asynchronous read data page requests.

� Buffer pool data writes is a counter that indicates the number of times a
buffer pool data page was physically written to disk.

� Asynchronous pool data page writes is a counter that records the number of
times a buffer pool data page was physically written to disk by either an
asynchronous page cleaner, or a prefetcher. A prefetcher may have written
dirty pages to disk to make space for the pages being prefetched.

� Buffer pool index logical reads is a counter that records the number of
logical read requests for index pages that have gone through the buffer pool.

� Buffer pool index physical reads is a counter that records the number of
read requests that required I/O to get index pages into the buffer pool.

Important: All the fields in the snapshot monitor, whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before reacting
with configuration changes.

Note that counter type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

256 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� Asynchronous pool index page reads is a counter that records the number of
asynchronous read index page requests.

� Buffer pool index writes is a counter that indicates the number of times a
buffer pool index page was physically written to disk.

� Asynchronous pool index page writes is a counter that records the number
of times a buffer index data page was physically written to disk by either an
asynchronous page cleaner, or a prefetcher. A prefetcher may have written
dirty pages to disk to make space for the pages being prefetched.

� Total buffer pool read time (ms) is a counter that records the total amount
of elapsed time spent processing read requests that caused data or index
pages to be physically read from disk to buffer pool.

� Total elapsed asynchronous read time is a counter that records the total
elapsed time spent reading by database manager prefetchers.

� LSN Gap cleaner triggers is a counter that records the number of times a
page cleaner was invoked because the logging space used had reached a
predefined criterion for the database.

� Dirty page steal cleaner triggers is a counter that records the number of
times a page cleaner was invoked because a synchronous write was needed
during the victim buffer replacement for the database.

� Dirty page threshold cleaner triggers is a counter that records the
number of times a page cleaner was invoked because a buffer pool had
reached the dirty page threshold (chngpgs_thresh) criterion for the database.

� Time waited for prefetch (ms) is a counter that records the total amount of
time an application waited for a prefetcher to finish loading pages into the
buffer pool.

� Unread prefetch pages is a counter that records the number of pages that
the prefetcher read in that were never used.

� Direct reads is a counter that records the number of read operations that do
not use the buffer pool.

� Direct writes is a counter that records the number of write operations that
do not use the buffer pool.

� Direct read requests is a counter that records the number of requests to
perform a direct read of one or more sectors of data.

� Direct write requests is a counter that records the number of requests to
perform a direct write of one or more sectors of data.

� Direct reads elapsed time (ms) is a counter that records elapsed time (in
milliseconds) required to perform the direct reads.

 Chapter 3. Application design and system performance considerations 257

� Direct writes elapsed time (ms) is a counter that records elapsed time (in
milliseconds) required to perform the direct writes.

� Database files closed is a counter that records the total number of database
files closed.

� Vectored IOs is a counter that records the number of vectored I/O requests.

� Pages from vectored IOs is a counter that records the total number of pages
read by vectored I/O.

� Block IOs is a counter that records the number of block I/O requests.

� Pages from block IOs is a counter that records the total number of pages
read by block I/O.

� Last reset timestamp (not shown in any of the figures) is a timestamp
element type and indicates the date and time that the monitor counters were
reset for the application issuing the get snapshot command.

� Snapshot timestamp (not shown in any of the figures) is a timestamp when
the get snapshot command was issued.

Compute the following values:

Consider tuning the various parameters under the following circumstances:

� For OLTP and BI environments, if the buffer hit ratios are less than 80%, then
consider adding buffers in increments to try to improve the Buffer Pool Hit
Ratio for data and indexes, Buffer Pool Hit Ratio for data and Buffer Pool Hit
Ratio for indexes as defined earlier. Aim for higher Buffer Pool Hit Ratio for
indexes ratios.

� Prefetching performance can be analyzed by comparing the amount of
synchronous versus asynchronous I/O as computed by Prefetch Ratio above.

If the Prefetch Ratio is very small, then there is little prefetch activity
happening. This may be due to less num_ioservers configured, or a workload

Prefetch ratio as follows:

Prefetch Ratio = (((Asynchronous pool data page reads) + (Asynchronous pool
index page reads)) / ((Buffer pool data logical reads) + (Buffer pool index
logical reads))) * 100

Percentage of dirty page steal cleaner triggers as follows:

Percentage of dirty page steal cleaner triggers = ((Dirty page steal cleaner
triggers) / ((Dirty page steal cleaner triggers) + (Dirty page threshold
cleaner triggers) + (LSN Gap cleaner triggers))) * 100

258 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

reading very few rows at a time thereby inhibiting prefetching, or all the table
spaces in the database are set up with only one container each so that
prefetching normally does not occur.

Another consideration is the Time waited for prefetch (ms); a high value may
indicate an insufficient number of prefetchers since applications are waiting
for the prefetch to complete. Other causes of a high value may be an poorly
tuned I/O subsystem resulting in elongated I/I times.

� A high value in the Unread prefetch pages counter indicates that prefetchers
are causing unnecessary I/O by reading pages into the buffer pool that will not
be used. This may indicate a very large prefetch size that could perhaps be
reduced.

� If the Percentage of dirty page steal cleaner triggers is high, it indicates that
page cleaners are being triggered too aggressively which defeats one
purpose of the buffer pool that is to defer writing to the last possible moment.
A high value indicates that dirty pages were written out synchronously to disk,
and that the application had to wait for these I/Os to complete. This requires
re-evaluating the values set for chngpgs_thresh (lower the percentage),
softmax (reduce the percentage) and num_iocleaners (increase the
number). The objective is to flush dirty pages more frequently to avoid the
synchronous flushing of dirty pages. This value should be very low.

� For block-based buffer pools, the ratio (Pages from block IOs/Block IOs)
provides the number of pages read per block I/O. If this value is much less
than the BLOCKSIZE defined for the block-based buffer pool, than it indicates
that the BLOCKSIZE is too large and could be made smaller.

� If the number of Vectored IOs is significantly larger than the number of Block
IOs, it may indicate that the buffer pool is poorly configured for block-based
I/O and NUMBLOCKPAGES may need to be increased.

� Consider the following for the num_cleaners parameter:

– Reduce num_iocleaners if:

Note: When DB2_PARALLEL_IO is enabled, prefetching can occur within a
single container table space if the prefetch size is a multiple of the extent
size.

Note: DB2 allows wasted space in a block during a block I/O because it is
possible that some pages were already found in the buffer pool. Currently,
DB2 can waste up to 50% of a block. Anything more than that will cause
DB2 to do page-based I/O into the page area of the buffer pool.

 Chapter 3. Application design and system performance considerations 259

• Buffer pool data writes is approximately equal to Asynchronous pool
data page writes

• Buffer pool index writes is approximately equal to Asynchronous pool
index writes

– Increase num_iocleaners if:

• Buffer pool data writes is much greater than Asynchronous pool data
page writes

• Buffer pool index writes is much greater than Asynchronous pool index
page writes

3.4.6 Locking considerations
Concurrency is critical to the performance and throughput of multi-user
environments accessing shared data. Throughput and concurrency depends
upon application design and database configuration parameters. Application
design considerations are discussed in 3.3.7, “Concurrency” on page 186;
however, we cover the runtime considerations here.

The size of a lock is depends upon the mode of DB2, and whether it is the first
lock acquired on the database object, as shown in Table 3-12.

Table 3-12 Lock space usage details

An important concept that can have a significant impact on concurrency is lock
escalation, which is the process of replacing large number of row locks with a
single table lock. Escalation occurs from row locks to a table lock when the
number of locks held exceed the thresholds defined by the database
configuration parameters locklist and maxlocks. A table can be escalated in
share or exclusive mode, with exclusive mode being significantly more
detrimental to concurrency and throughput. Lock escalations can result in
reduced concurrency, lock waits, and deadlocks.

Figure 3-35 on page 261 describes the lock escalation process when maxlocks is
exceeded.

DB2 bit mode Bytes per lock Condition

DB2 32-bit mode 72 bytes First lock on an object

36 bytes Subsequent locks on an object

DB2 64-bit mode 112 bytes First lock on an object

56 bytes Subsequent locks on an object

260 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-35 Process of lock escalation

In step 1, applications A, B, and C take row locks on tables X, Y, and Z
respectively, which occupy storage in the lock list.

In step 2, locks taken by application A causes the maxlocks threshold to be
exceeded which triggers the lock escalation process.

In step 3, all the rows locks held by application A on table X are replaced by a
single table lock. If there had been multiple tables accessed by the application,
then it would have considered the table with the most row locks first as the
candidate for lock escalation.

In step 4, lock escalation stops when lock list utilization by this application drops
below the maxlocks level.

 Chapter 3. Application design and system performance considerations 261

The following database configuration parameters affect runtime concurrency and
throughput:

� locklist
� maxlocks
� locktimeout
� dlchktime

Each of these parameters are reviewed in turn, with a brief description of their
function, performance considerations associated with their use, best practices for
using them, and monitoring metrics for evaluating their effectiveness.

locklist
This parameter specifies the maximum amount of storage available to store all
the locks concurrently held within a database. This storage is allocated when the
first application connects to the database, and is freed when the last application
disconnects from the database.

When lock escalation occurs as a result of a lock list full condition, it might not
affect the table that acquires the lock that triggers escalation. Lock escalation
continues with tables with the most row locks until lock list utilization falls to about
half of the total locklist. The application receives a -912 sqlcode when the
maximum number of locks requests have been reached for the database.

The default value varies by platform and DB2 32-bit or 64-bit mode as follows:

� For UNIX

– 100 4KB pages

� For Windows

– Database server with local and remote clients 50 4KB pages

– 32-bit Database server with local clients 25 4KB pages

– 64-bit Database server with local clients 50 4KB pages

This parameter can be changed online—but can only be increased online. To
decrease the value of locklist, the database has to be reactivated after making
the change.

Performance considerations
An underconfigured value for this parameter can result in lock escalations which
can significantly degrade performance, while an overconfigured locklist can
waste valuable memory that could be better utilized in other heaps.

262 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Best practices
The lock list should accommodate the total number of concurrent locks held by all
concurrent applications.

We recommend the following best practices for tuning locklist:

� For an existing system, the get snapshot for database command as shown
in Figure 3-36 provides assistance in sizing locklist as follows:

Figure 3-36 Database snapshot for lock information

Important: All the fields in the snapshot monitor, whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before
reacting with configuration changes.

Note that counter type monitoring elements should be reset at the
beginning of each monitoring interval by issuing the RESET MONITOR
command.

 Chapter 3. Application design and system performance considerations 263

Compute the average number of locks per application (ANLA) as:

ANLA = (Locks held currently / Applications connected currently)

Choose a locklist value between the following lower and upper limits:

– Lower limit can be computed as:

((ANLA * (36 or 56 bytes) * maxappls) / 4096)

– Upper limit can be computed as:

((ANLA * (72 or 112 bytes) * maxappls) / 4096)

� For new systems, the same formula should be used with an estimate of the
number of concurrent locks

– OLTP transactions typically hold a maximum of less than 20 concurrent
locks

– BI queries, the number of concurrent locks held per query should be much
lower than OLTP transactions, given the read only nature of such
workloads.

� For OLTP & BI environments, lock escalations should be avoided completely
or kept to an absolute minimum to avoid significant performance degradation.

Performance monitoring metrics
Metrics to monitor lock-related information may be obtained from the Snapshot
Monitor as well as application concurrency health indicators in the Health Center,
as shown in Figure 3-26 on page 222.

Figure 3-36 on page 263 lists selected fields from the get snapshot for db
command.

Note: If maxappls is set to AUTOMATIC, consider using the highest value
reported in the Application connected currently field over many
representative intervals spread over a few weeks, to detect consistent
trends before reacting with configuration changes.

Note that counter-type monitoring elements should be reset at the
beginning of each monitoring interval by issuing the RESET MONITOR
command.

264 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The following fields are of interest for tuning locklist:

� Lock waits is a counter that records the number of times that applications or
connections waited for locks.

� Time database waited on locks (ms) is a counter that records the total
elapsed time waited for a lock.

� Deadlocks detected is a counter that records the total number of deadlocks
that have occurred.

� Lock escalations is a counter that records the total number of times that
locks have been escalated from several rows to a table lock.

� Exclusive lock escalations is a counter that record the total number of
times that locks have been escalated from several rows to a table lock.

� Lock timeouts is a counter that records the number of times that a request to
lock an object timed-out instead of being granted.

Figure 3-26 on page 222 shows the Health Center lock escalation health
indicators such as lock escalation rate and lock list utilization, which can also be
used to alert you to potential concurrency problems.

If the Lock escalations field is non-zero and Lock waits, average lock wait time
(ALWT), Deadlocks detected, and Lock timeouts are high, then lock escalations
should be eliminated. Since there is no definitive way to determine the precise
cause of lock escalations10 (locklist full or maxlocks threshold exceeded for an

Important: All the fields in the snapshot monitor, whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before reacting
with configuration changes.

Note that counter-type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

The average lock wait time (ALWT) can be computed as follows:

ALWT = (Time database waited on locks (ms) / Lock waits)

Note: The Lock list memory in use (Bytes) field is a gauge rather than a
water mark, and therefore not appropriate for sizing locklist.

10 lock list full returns a -912 sqlcode to the application; however, the occurrence of such application
errors may not be discernible to the DBA.

 Chapter 3. Application design and system performance considerations 265

application), a combination of the following approaches must be considered to
avoid lock escalations:

1. Increase locklist and use a trial and error method to determine the optimal
value.

2. Increase the maxlocks threshold, as discussed in “maxlocks” on page 266.

3. Have those applications identified through the administration notification log
messages (notifylevel 4) as shown in Figure 3-24 on page 217 use less
restrictive isolation levels (CS or UR) and issue more frequent commits to
reduce the number of concurrent locks (however, this is unlikely to be a timely
resolution to an immediate problem).

maxlocks
This parameter defines a percentage of the lock list held by an application that
must be filled before the database manager performs escalation. When the
number of locks held by any one application reaches this percentage of the total
lock list size, lock escalation will occur for some of the locks held by that
application.

The database manager determines which locks to escalate by looking through
the lock list for the application and finding the table with the most row locks. If,
after replacing these with a single table lock, the maxlocks value is no longer
exceeded, then lock escalation will stop. Otherwise, it will continue until the
percentage of the lock list is below the value of maxlocks.

The maxlocks parameter multiplied by the maxappls parameter cannot be less
than 100.

The default value is 10% for UNIX and 22% for Windows.

This parameter is configurable online.

Performance considerations
maxlocks and locklist are interdependent parameters, and maxlocks can have a
significant negative impact on concurrency and throughput.

Attention: The new High water mark (bytes) value of Lock Manager Heap in
the get snapshot for dbm | database command should not be used to set
the locklist parameter. Since the locklist is allocated in full when the first
application connects to the database, this high water mark always reflects this
initial allocation. Treat this watermark as a placeholder for a future release
enhancement.

266 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

If maxlocks is underconfigured, then lock escalations happen when there is still
enough lock space for other concurrent applications in locklist.

If maxlocks is overconfigured, then a few applications can consume most of the
locklist and other applications will have to perform lock escalation due to lock
space full condition.

Best practices
We recommend the following best practices for tuning maxlocks:

1. For OLTP environments, choose a value between 10% and 20%, since
transactions typically hold very few concurrent locks and there are a large
number of concurrent users.

2. For a large number of concurrent applications, consider:

maxlocks ((2*100)/ maxappls)

Where 2 is used to achieve twice the average, and 100 represents the largest
percentage value allowed.

3. For a few applications that run concurrently, consider:

maxlocks= ((2*100)/ Applications connected currently)

4. For BI environments, consider reducing the maxlocks parameters to below
that of OLTP, since queries are primarily read only and rarely hold many
concurrent locks.

Performance monitoring metrics
All the monitoring metrics discussed for locklist apply to maxlocks, as well.

With an Event Monitor, you can determine the maximum number of locks
(locks_held_top monitoring element) held for an individual application and use it
to tune the value of maxlocks. For details on creating an Event Monitor with
transaction events, refer to DB2 UDB System Monitor Guide and Reference,
SC09-4847.

locktimeout
This parameter specifies the number of seconds that an application will wait to
obtain a lock.

The default is -1, which means that lock timeout detection is turned off; this
means that the application waits until the lock is granted or a deadlock occurs
and it is chosen as the victim.

Performance considerations
If locktimeout is set very high, then an application’s run time may increase due
to potentially long lock waits and the possible occurrence of deadlocks. If

 Chapter 3. Application design and system performance considerations 267

locktimeout is set too low, spurious timeouts occur when the application could
have completed successfully, had they waited a little bit longer for the lock to be
granted.

When an application times out, it receives an error message SQL0911N with a
reason code of 68, and allows other applications to proceed. The timed-out
application may choose to retry the request or terminate with an error message.

Best practices
We recommend the following best practices for tuning locktimeout:

1. For OLTP environments with short-lived transactions, set locktimeout to a
few seconds (less than 10 seconds), and then tune it to an optimal value.

Do not let it default to -1.

2. For BI environments which tend to run much longer, set locktimeout to a
higher value (perhaps 60 seconds), and then tune it to an optimal value.

Performance monitoring metrics
Figure 3-36 on page 263 provides information about lock waits in the fields Lock
Timeouts and average wait time for a lock (Time database waited on locks (ms)
/ Lock waits).

Consider the following:

� Increase the locktimeout value when there are too many lock timeouts.

� Decrease the locktimeout value if the average lock wait times are too high.

Additional details may be obtained in the administration notification log when the
notifylevel is set to 4.

For more details on the administration notification log, refer to DB2 UDB
Administration Guide: Performance, SC09-4821.

dlchktime
This parameter specifies the frequency at which the database manager checks
for deadlocks among all the applications connected to the database.

The default is 10000 milliseconds.

Note: notifylevel 4 should only be used for problem determination in short
bursts, because it incurs overhead.

268 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Performance considerations
A high value for this parameter decreases the frequency of checking for
deadlocks, and can cause applications to wait longer than necessary for the
resolution of a deadlock condition. A low value for this parameter increases the
frequency of checking for deadlocks and can therefore decrease run-time
performance due to increased database manager deadlock checking.

Best practices
We recommend that you let dlchktime default to 10 seconds for both OLTP and
BI environments.

Performance monitoring metrics
In UNIX, the db2dlock process performs deadlock detection. Monitor this process
for high CPU utilization using the ps aux | grep db2dlock operating system
command and increase the value of dlchktime if the CPU consumption of this
process is more than 1% or 2% in a CPU-constrained environment.

In Windows, this function is performed as a thread under the db2sysc process
and cannot be monitored.

3.4.7 Package cache considerations
The pckcachesz database configuration parameter specifies the size of the cache
used for caching sections for static and dynamic SQL statements in the
database. This is allocated out of database shared memory, and is allocated
when the database is initialized and freed when the database is shut down.

Caching packages allows the database manager to reduce its internal overhead
by eliminating the need to access the system catalogs when reloading a
package, or, in the case of dynamic SQL eliminating the need for compilation.
Performance is enhanced when the same package or dynamic statement is used
multiple times by applications connected to the database.

Sections for static and dynamic SQL statements are kept in the package cache
until one of the following happens:

� The database is shut down.

� The static package or the dynamic SQL is invalidated.

� The package cache runs out of space.

� The package cache is reset by issuing the FLUSH PACKAGE CACHE command.

When a new package needs to be retrieved from disk and inserted into the
package cache, but there is no more space in the cache and all the packages in
the cache are in use, then overflows occur to other database memory heaps.

 Chapter 3. Application design and system performance considerations 269

However, if there is no unused space in the package cache, but there are unused
packages in the package cache, then a victim is chosen from the unused
packages and its space is used for the incoming package.

The default value is -1, which corresponds to the minimum of 32 4 K pages, or 8
times the value of maxappls. This is a soft limit and can overflow to other
database shared memory heaps such as dbheap, util_heap_sz, and
catalogcache_sz. This cache can also have spill-ins from catalogcache_sz.

This parameter is configurable online.

Performance consideration
If this package cache is too small, performance can degrade due to the need for
package access from disk or the need for compiling dynamic SQL statements. In
addition, package cache overflows to other database shared memory heaps can
impact catalog cache hit ratio and result in overall system performance
degradation.

If the package cache is too big, then memory would be wasted holding copies of
the initial sections; this memory would be better served used by other database
shared memory heaps such as buffer pools or the catalog cache.

Best practices
We recommend the following best practices for tuning pckcachesz. For both
OLTP and BI environments:

� Start with the default value, and tune its value using the Database System
Monitor.

� Strive for a high package cache hit ratio of 0.8 or more, and eliminate
overflows to other heaps.

In many cases where dynamic SQL is used without parameter markers,
package cache hit ratios can be well below 0.8. In such cases, if the SQL
cannot be changed, concentrate on tuning the catalog cache.

� Choose pckcachesz equal to (Package cache high water mark / 4096) from
Figure 3-37 on page 271.

Attention: For OLTP environments where a set of SQL statements are
executed repeatedly, inserts into the package cache may be a more
significant indicator of poor performance than overflows, since they incur
constant recompiling of dynamic SQL statements that is expensive.

270 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Performance monitoring metrics
Metrics to monitor lock-related information may be obtained from the snapshot
monitor as well as package cache indicators in the Health Center as shown in
Figure 3-26 on page 222.

Figure 3-37 lists selected fields from the get snapshot for db command.

Figure 3-37 Database snapshot - package cache monitor elements

All the fields in Figure 3-37 are of interest in tuning pckcachesz:

� Package cache lookups is a counter that records the number of times that an
application looked for a section or package in the package cache. This
indicates the overall number of references at the database level since the
database was started or monitor data was reset. This is used to compute the
package cache hit ratio.

� Package cache inserts is a counter that records the number of times that a
requested section was not available for use and had to be loaded into the
package cache. This is used to compute the package cache hit ratio.

� Package cache overflows is a counter that records the total number of times
the package cache overflowed the bounds of its allocated memory.

� Package cache high water mark is a water mark that records the largest size
(in bytes) reached by package cache (in bytes). If the package cache
overflowed, then this element contains the largest size reached by the
package cache during overflow.

Important: All the fields in the snapshot monitor, whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks to detect consistent trends before reacting
with configuration changes.

Note that counter-type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

 Chapter 3. Application design and system performance considerations 271

Consider increasing the value of pckcachesz under the following circumstances:

� The package cache hit ratio (PCHR) is below 0.8; use a trial and error method
of increasing the size of the package cache until PCHR stops increasing.

� Package cache overflows is greater than zero.

� For OLTP environments, if there is significant Package cache inserts in a
steady state even without Package cache overflows, since this implies
constant recompiling of dynamic SQL statements.

Consider decreasing the value of pckcachesz when ((Package cache high water
mark) / 4096) is consistently less than the value of pckcachesz.

3.4.8 Catalog cache considerations
The catalogcache_sz database configuration parameter specifies the size of the
cache that is allocated out of database shared memory. This memory gets
allocated when the database is initialized and freed when the database is shut
down. The catalog cache stores the following:

� SYSTABLES information, including package descriptors

� Authorization information, including SYSDBAUTH information and execute
privileges for routines

� SYSROUTINES information

The use of the catalog cache can help improve the performance of the following if
most of the required information can be found in the cache:

� Binding packages and compiling SQL statements

� Operations involving checking of database level privileges

� Operations involving checking of execute privileges for routines such as
stored procedures and UDFs

When a new object needs to be retrieved from disk and inserted into the catalog
cache, but there is no more space in the cache and all the objects in the cache
are in use, then object overflows occur to other database memory heaps.
However, if there is no unused space in the catalog cache, but there are unused
objects in the catalog cache, then a victim is chosen from the unused objects and
its space is used for the incoming object.

Compute the package cache hit ratio (PCHR) as follows:

PCHR = (1 - (Package cache inserts / Package cache lookups))

272 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The default value is -1 corresponds to the minimum of 8 4 K pages, or 4 times the
value of maxappls. This is a soft limit and can overflow to other database shared
memory heaps such as dbheap, util_heap_sz, and pckcachesz. This cache can
also have spill-ins from pckcachesz.

This parameter is configurable online.

Performance considerations
If this catalog cache is too small, then performance of binding packages,
compiling statements, and authorization checking can degrade due to disk I/Os.
In addition, catalog cache overflows to other database shared memory heaps
can result in overall system performance degradation.

If the catalog cache is too big, then memory would be wasted holding copies of
information that is no longer used; this memory would be better served used by
other database shared memory heaps, such as buffer pools or the package
cache.

Best practices
We recommend the following best practices for tuning catalogcache_sz. For
both OLTP and BI environments:

� Start with the default value, and tune its value using the Database System
Monitor.

� Strive for a high catalog cache hit ratio of 0.8 or more, and eliminate overflows
to other heaps.

� Choose catalogcache_sz equal to (Catalog cache high water mark / 4096)
from Figure 3-38.

Performance monitoring metrics
Metrics to monitor lock-related information may be obtained from the snapshot
monitor as well as catalog cache indicators in the Health Center, as shown in
Figure 3-26 on page 222.

Figure 3-38 on page 274 lists selected fields from the get snapshot for db
command.

 Chapter 3. Application design and system performance considerations 273

Figure 3-38 Database snapshot - catalog cache monitor elements

All fields in Figure 3-38 are of interest in tuning catalogcache_sz:

� Catalog cache lookups is a counter that records the number of times that the
catalog cache was referenced to obtain table descriptor information or
authorization information. This is used to compute the catalog cache hit ratio.

� Catalog cache inserts is a counter that records the number of times that the
system tried to insert table descriptor or authorization information into the
catalog cache. This is used to compute the catalog cache hit ratio.

� Catalog cache overflows is a counter that records the total number of times
that the catalog cache overflowed the bounds of its allocated memory.

� Catalog cache high water mark is a water mark that records the largest size
(in bytes) reached by the catalog cache. If the catalog cache overflowed, then
this element contains the largest size reached by the catalog cache during
overflow.

Consider increasing the value of catalogcache_sz under the following
circumstances:

Important: All the fields in the snapshot monitor, whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before reacting
with configuration changes.

Note that counter-type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

Compute the catalog cache hit ratio (CCHR) as follows:

CCHR = (1 - (Catalog cache inserts / Catalog cache lookups))

274 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� The catalog cache hit ratio (CCHR) is below 0.8; use a trial and error method
of increasing the size of the catalog cache until CCHR stops increasing.

� Catalog cache overflows is greater than zero.

Consider decreasing the value of catalogcache_sz when ((Catalog cache high
water mark) / 4096) is consistently less than the value of catalogcache_sz.

3.4.9 Sort considerations
DB2 may perform sorts to return query results in a desired order (SELECT
statement that uses the ORDER BY clause) when performing joins and during index
creation. The performance of sort depends upon many factors including the
writing of efficient SQL, and the configuring of the following parameters:

� Database manager configuration parameter

– sheapthres is an instance-wide limit on the total amount of memory that
can be consumed for sorts. It is used differently for private and shared
sorts11 as follows:

• For private sorts, this parameter is an instance-wide soft limit on the
total amount of memory that can be consumed by private sorts at any
given time. When this limit is reached, the memory allocated for
additional incoming private sort requests will be considerably reduced.
These sorts are called “post-threshold” sorts.

• For shared sorts, this parameter is a database-wide hard limit on the
total amount of memory that can be consumed by shared sorts at any
given time. When this limit is reached, no further shared-sort memory
requests are allowed (they will fail with SQL0955C) until the total
shared sort memory consumption falls below the limit specified by
sheapthres.

The default value is 20000 4 K pages for UNIX and 64-bit platforms, and
10000 4 K pages for Windows.

� Database configuration parameters

– sortheap defines the maximum number of private memory pages to be
used for a private sort, or the maximum number of shared memory pages
to be used for a shared sort. Each sort operation has a separate sort heap

11 DB2 performs shared sorts in database shared memory when the INTRA_PARALLEL database
manager configuration parameter is enabled; otherwise, it performs private sorts in private agent
memory.

Attention: This limit only applies to shared sorts when the
sheapthres_shr database configuration parameter is set to zero.

 Chapter 3. Application design and system performance considerations 275

that is allocated as needed by DB2 and freed when the sorting completes.
In the case of a piped sort (see the definition in “Return of results of from
the sort phase” on page 277), the sort heap is not freed until the
application closes the cursor associated with the sort.

If directed by the DB2 optimizer, a smaller sort heap than the one specified
by sortheap is allocated by DB2.

The default is 256 4 K pages.

This parameter is configurable online.

– sheapthres_shr is a database-wide hard limit on the total amount of
database shared memory that can be used for shared sorts. When this
limit is reached, no further shared-sort memory requests are allowed (they
will fail with SQL0955C) until the total shared sort memory consumption
falls below the limit specified by sheapthres_shr.

sheapthres_shr is only meaningful in two cases as follows:

i. If the INTRA_PARALLEL database manager configuration parameter is
set to yes, because when INTRA_PARALLEL is set to no, there will be no
shared sorts.

ii. If the connection concentrator (database manager configuration
parameters max_connections greater than max_coordagents) is enabled
because sorts that use a cursor declared with the WITH HOLD option
will be allocated from shared memory.

DB2 sorts are performed in two phases, as follows:

1. Sort phase

When a sort is performed, DB2 allocates a block of memory equivalent to
sortheap in which data is sorted. When the sort cannot be sorted entirely
within the sort heap, it overflows into the buffer pool and temporary table as
shown in Figure 3-39 on page 277 and is called an overflowed sort. When no
overflow occurs, the entire sort is completed in the sort heap and is called a
non-overflowed sort.

Attention: Sorts that do not overflow perform better than those that do.

276 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-39 Overflowed sorts

2. Return of results of from the sort phase

If sorted information can return directly without requiring a temporary table to
store the final sorted list of data, then it is called a piped sort. If the sorted
information requires a temporary table to be returned, then it is called a
non-piped sort. Figure 3-40 on page 278 shows an example of a
non-overflowed piped sort.

Attention: A piped sort always performs better than a non-piped sort.

 Chapter 3. Application design and system performance considerations 277

Figure 3-40 Non-overflowed piped sorts

Performance considerations
Avoiding sorts is generally preferred through appropriate indexing of tables and
writing of efficient SQL (Index SARGable predicates).

If sorts cannot be avoided, then:

� Non-overflowed piped sorts are preferred by configuring an appropriate
sortheap value.

Note: The DB2 optimizer will attempt to calculate the size of the sort heap that
will be needed based on table statistics. If it requires more space than
configured by sortheap, then the sort will be overflowed. Otherwise, DB2 will
attempt to allocate the entire sortheap for the sort. In addition, the DB2
optimizer will also determine whether a piped or non-piped sort should be
performed.

278 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� Post-threshold sorts should also be avoided by configuring an appropriate
sheapthres value, since they result in smaller sort heap allocations and
therefore the potential for overflowed sorts.

� Avoid a rejection of new shared sorts (SQL0955C messages) due to an
insufficient configuration of sheapthres_shr.

Best practices
We recommend the following best practices for enhancing sort performance and
tuning the sortheap, sheapthres and sheapthres_shr parameters:

1. Avoid sorts as far as possible by defining appropriate indexes on tables and
writing efficient SQL. Use the Design Advisor wizard or db2advis command
and EXPLAIN described in 2.6.7, “Design Advisor” on page 93 and EXPLAIN
as described in 2.6.8, “Explain and Visual Explain” on page 94 against all long
running queries to verify index access.

2. Start with the default values, and tune sortheap, sheapthres, and
sheapthres_shr to minimize overflows and non-piped sorts and then tune
them for optimal values.

– For critical workloads where frequent large sorts are performed, consider
setting up a representative workload and tuning sortheap, sheapthres,
and sheapthres_shr for that workload before adopting it in the production
environment.

3. For OLTP environments:

– Disable the INTRA_PARALLEL database manager configuration parameter.

– Ensure that very few if any sorts are performed.

4. For BI environments:

– Enable the INTRA_PARALLEL database manager configuration parameter.

– Increase sheapthres parameter and sheapthres_shr because of the
increased number and size of sorts.

Performance monitoring metrics
Metrics for monitoring sortheap, sheapthres and sheapthres_shr may be
obtained from the snapshot monitor and appropriate sorting health indicators in
the Health Center as shown in Figure 3-26 on page 222.

Note: Overconfiguring these parameters without adequate real memory to
back it up can result in system paging that is detrimental to overall
performance, even though non-overflow piped sorts are indicated.

 Chapter 3. Application design and system performance considerations 279

Figure 3-41 shows sort relevant snapshot information from the get snapshot for
dbm command, and Figure 3-42 shows sort relevant information from the get
snapshot for db command.

Figure 3-41 Database manager snapshot - sort monitor elements

Figure 3-42 Database snapshot - sort monitor elements

Important: All fields in the snapshot monitor, whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before
reacting with configuration changes.

Note that counter-type monitoring elements should be reset at the
beginning of each monitoring interval by issuing the RESET MONITOR
command.

280 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The following fields are of interest for tuning sortheap, sheapthres, and
sheapthres_shr:

� Database manager snapshot

– Private sort heap high water mark is a water mark of the total number
of allocated pages of sort heap space for all private sorts across all
databases.

– Post threshold sorts is a counter that records the total number of sorts
that have requested heaps after the sort heap threshold (sheapthres) has
been exceeded.

– Piped sorts requested is a counter that records the total number of piped
sorts that have been requested.

– Piped sorts accepted is a counter that records the total number of piped
sorts that have been accepted. A piped sort is rejected if the sort heap
threshold (sheapthres) will be exceeded when the sort heap is allocated
for the sort.

� Database snapshot

– Total Private Sort heap allocated is a gauge that records the total
number of allocated pages of sort heap space for all private sorts.

– Total Shared Sort heap allocated is a gauge that records the total
number of allocated pages of sort heap space for all shared sorts.

– Shared Sort heap high water mark is a water mark of the total number of
allocated pages of sort heap space for all shared sorts for this database.

– Total sorts is a counter that records the total number of sorts that have
been executed.

– Total sort time (ms) is a counter that records the total elapsed time in
milliseconds for all sorts that have been executed.

– Sort overflows is a counter that records the total number of sorts that ran
out of sort heap and may have required disk space for temporary storage.

– Active sorts is a gauge that records the number of sorts in the database
that currently have a sort heap allocated.

– Commit statements attempted is a counter that records the total number
of commits that have been attempted.

– Rollback statements attempted is a counter that records the total number
of rollbacks that have been attempted.

 Chapter 3. Application design and system performance considerations 281

Consider modifying sortheap, sheapthres, and sheapthres_shr under the
following circumstances:

1. Compare the water marks for Private Sort heap high water mark and Total
Shared Sort heap high water mark with the corresponding values of
sheapthres and sheapthres_shr.

If they are significantly lower than the configuration parameters, consider
setting the configuration parameters to a few percentage points above the
water mark levels.

If Private Sort heap high water mark is higher than sheapthres, then it means
that less than desired amount of sort heap is being allocated; this should
register as Post threshold sorts. Increase the sheapthres value a few
percentage points above the water mark.

If Shared Sort heap high water mark is close or equal to the sheapthres_shr
configuration parameter setting, increase its value a few percentage points
above the water mark. User applications may receive the SQL0955C error
message.

2. If the percentage of overflowed sorts (Sort overflows / Total sorts) is high,
increase sortheap and/or sheapthres.

3. If Post threshold sorts relative to Total sorts are high, increase sheapthres
and/or decrease sortheap.

Decreasing sortheap may help since smaller allocations are less likely to
cause the sheapthres threshold to be exceeded. However, decreasing
sortheap may cause sort overflows to occur which is undesirable.

4. If piped sorts rejected (Piped sorts requested - Piped sorts accepted) relative
to Piped sorts requested is high, increase sortheap or sheapthres.

5. If there are user complaints about receiving SQL0955C error messages
which indicates that the shared memory sorts threshold has been exceeded,
increase sheapthres_shr.

6. OLTP environments should have very few sorts occurring, if any, and small
ones at that:

– Compute the sorts per transaction = (Total sorts/(Commit statements
attempted + Rollback statements attempted))

Note: Database manager and database snapshots only indicate the presence
of a sort problem, not the SQL statements causing them. In order to identify
the SQL statements invoking sorts, a dynamic SQL snapshot or an Event
Monitor for SQL statements is required.

282 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

If this ratio is greater than 5, it might indicate that there are too many sorts
occurring.

– If the percentage of overflowed sorts (Sort overflows / Total sorts) is
greater than 3%, then it indicates that large sorts may be occurring.

– If the average sort time (Total sort time (ms) / Total sorts) is in seconds, it
highlights a potential problem that requires adding appropriate indexes to
eliminate sorts, or modifying the problem SQL statements (through
dynamic SQL snapshots or Event Monitors).

7. BI environments will traditionally have a number of small and large sorts, and
the settings of sortheap, sheapthres, and sheapthres_shr parameters as
well as efficient SQL coding, appropriate buffer pool assignments, and proper
temporary table space placement will have a significant impact on sort
performance.

3.4.10 Other memory considerations
There are a number of other memory heaps not covered in the previous sections
that also have an impact on system performance, and should be tuned for
optimal performance.

This section discusses some of the more important memory heaps by the
category defined in Figure 2-7 on page 32 as follows:

1. Database shared memory

– Database heap — dbheap

2. Agent private memory

– Application heap size —- applheapsz

– Maximum java interpreter heap size — java_heap_sz

– Query heap size — query_heap_sz

– Statement heap size — stmtheap

3. Agent/Application shared memory

– Application support layer heap size — aslheapsz

– Client I/O block heap size — rqrioblk

Attention: The first rule of thumb for setting memory allocation parameters is
never to set them at their highest values unless such a value can be carefully
justified. Many parameters that affect memory can allow database manager
easily and quickly to take up all the available memory on a machine.

 Chapter 3. Application design and system performance considerations 283

dbheap
This database configuration parameter allocates space in database shared
memory and holds space for many items including:

� Temporary memory for utilities.

� Event Monitor buffers.

� Log buffers as specified by the database configuration parameter logbufsz.

� Temporary overflows (spill-in) from package cache (database configuration
parameter pckcachesz) and from catalog cache (database configuration
parameter catalogcache_sz).

The minimum amount the database manager needs to get started is allocated at
first connection, and then expanded as needed up to the maximum specified by
dbheap.

The default is AUTOMATIC, and this parameter is configurable online.

Performance considerations
If there is insufficient database heap specified, applications and utilities with fail
with messages such as SQL0956C, SQL1084C and SQL2009C. Overconfiguring
dbheap may cause problems allocating the application control shared memory
with messages such as SQL0987C.

Best practices
We recommend the following best practices for tuning dbheap:

1. For critical OLTP and BI environments, determine the appropriate value
through benchmarking representative workloads.

2. For most environments, choose the default and let DB2 determine the size
and then tune for optimal value.

3. Ensure that dbheap is increased correspondingly whenever any of its
component heaps are increased, such as logbufsz.

Performance monitoring metrics
Metrics to monitor the dbheap may be obtained from the snapshot monitor as well
as the Database Heap Utilization health indicator in the Health Center as shown
in Figure 3-26 on page 222.

284 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 3-43 shows selected fields of the get snapshot for db command.

Figure 3-43 Database snapshot - database heap memory usage

The fields of interest in Figure 3-43 for tuning dbheap are:

� High water mark (bytes) is a water mark that of the highest utilization of
memory by the database heap.

� Maximum size allowed (bytes) is the maximum amount of memory as
specified by the dbheap parameter.

Consider doubling the value of dbheap when:

� High water mark (bytes) is around 90% utilization of the Maximum size
allowed (bytes) value.

� When applications and utilities report memory shortages via SQL0956C,
SQL1084C, and SQL2009C messages.

In the case of the SQL2009C message using the DB2 backup utility, first check
the database configuration parameter util_heap_sz and the backup utility’s
buffers value specified in the backup command and tune them accordingly
before increasing the dbheap value.

applheapsz
This database configuration parameter allocates space in agent private memory
and defines the number of pages available to be used by the database manager
on behalf of a specific agent or subagent. This heap is used to store copies of the
executing sections of SQL statements for agents and subagents.

The heap is allocated when an agent or subagent is initialized for an application.
The amount allocated will be the minimum amount needed to process the

Important: All the fields in the snapshot monitor, whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before reacting
with configuration changes.

Note that counter-type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

 Chapter 3. Application design and system performance considerations 285

request given to the agent or subagent. As the agent or subagent requires more
heap space to process larger SQL statements, the database manager will
allocate memory as needed, up to the maximum specified by this parameter. The
default value is 256 4 K pages.

This parameter is not an online configurable parameter, hence the database
needs to be deactivated and reactivated for changes to take effect.

Performance considerations
Under configuring this parameter will result in the application receiving
SQL0945C error messages complaining about inadequate application heap size.
Overconfiguring applheapsz causes overallocation of agent private memory,
even though applheapsz is allocated on demand.

Best practices
We recommend the following best practices for tuning applheapsz:

1. For critical OLTP environments, determine the appropriate value through
benchmarking representative workloads.

2. For most environments, choose the default and then tune to an optimal value.

Performance monitoring metrics
Metrics to monitor the applheapsz may be obtained from the snapshot monitor as
well as the Memory Visualizer as described in 2.6.11, “Memory Visualizer” on
page 103.

Figure 3-44 lists selected fields from the get snapshot for applications
command.

Figure 3-44 Application snapshot - application memory usage by all agents

286 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The fields of interest in Figure 3-44 on page 286 for tuning applheapsz are:

� High water mark (bytes) is a water mark that of the highest utilization of
memory by the application heap.

� Maximum size allowed (bytes) is the maximum amount of memory as
specified by the applheapsz parameter.

Consider increasing the value of applheapsz when:

� High water mark (bytes) is around 80% to 90% utilization of the Maximum
size allowed (bytes) value.

� When applications report memory shortages via SQL0945C messages.

Consider decreasing the value of applheapsz when the water mark is
consistently below the maximum specified.

java_heap_sz
This database manager configuration parameter determines the size of the heap
that will be used by the Java interpreter started to service Java DB2 stored
procedures and UDFs.

This heap is allocated in full when a Java stored procedure or UDF starts, and
freed when the db2fmp process (fenced) or the db2agent process (trusted)
terminates.

The heap is allocated as follows.

� One heap for each fenced UDFs and fenced stored procedure process

� One heap per agent not including sub-agents for trusted routines

� One heap per db2fmp process running Java stored procedure

� Multi-threaded db2fmp process service multiple applications from one heap

In all situations, only the agents or processes that run Java UDFs or stored
procedures ever allocate this memory.

The default is 512 4 K pages, and this parameter is not configurable online.

Important: All the fields in the snapshot monitor, whether they are water
marks, counters or gauges, should be monitored over many representative
intervals spread over a few weeks to detect consistent trends before reacting
with configuration changes.

Note that counter-type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

 Chapter 3. Application design and system performance considerations 287

Performance considerations
Underconfiguring this parameter will result in applications failing with an error
message such as SQL4301N. Overconfiguring java_heap_sz causes
overallocation of agent private memory.

Best practices
We recommend the following best practices for tuning java_heap_sz:

1. For critical OLTP and BI environments, determine the appropriate value
through benchmarking representative workloads.

2. For most environments, choose the default and tune for optimal value using a
trial and error method.

Performance monitoring metrics
There are no metrics for monitoring this parameter.

When applications receive SQL4301N messages, the java_heap_sz should be
increased incrementally until the applications no longer receive the SQL4301N
message.

query_heap_sz
This database manager configurable parameter specifies the maximum amount
of memory that can be allocated for the query heap. A query heap is used to
store each query in the agent private memory. The information for each query
consists of the input and output SQLDA, the statement text, the SQLCA, the
package name, creator, section number, and consistency token.

This parameter is provided to ensure that an application does not consume
unnecessarily large amounts of virtual memory within an agent. The query heap
is also used for the memory allocated for blocking cursors. This memory consists
of a cursor control block and a fully resolved output SQLDA.

The initial query heap allocated will be the same size as the application support
layer heap as specified by the aslheapsz database configuration parameter.
When an application connects to DB2, the initial size of the query heap is the
minimum of two pages, or equal to the size specified by the aslheapsz database
configuration parameter. If this query heap is not large enough to handle a given
request, it will be reallocated to the size required by the request as long as it
does not exceed query_heap_sz. If this revised query heap value is more than 1.5
times the size of aslheapsz, then the query heap will be reallocated to the size of
aslheapsz when the query ends.

The query heap is allocated when an application connects to the database, and
is deallocated when the application disconnects from the database or detaches
from the instance.

288 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The default value is 1000 4 K pages, and this parameter is not configurable
online.

Performance considerations
Underconfiguring this parameter will cause applications to fail with messages
such as SQL0973N. Overconfiguring query_heap_sz causes overallocation of
agent private memory even though query_heap_sz is allocated on demand.

Best practices
We recommend the following best practices for tuning query_heap_sz:

1. For critical OLTP and BI environments, determine the appropriate value
through benchmarking representative workloads.

2. For most environments, choose a value that is at least five times as large as
the aslheapsz parameter value to allow for queries that are larger than
aslheapsz and to allow for enough memory to support three to four concurrent
blocking cursors.

Performance monitoring metrics
There are no metrics for monitoring this parameter; however, see monitoring
metrics for “aslheapsz” on page 291.

When applications receive SQL0937N messages, the query_heap_sz should be
increased incrementally until the applications no longer receive the SQL0937N
message.

stmtheap
This database configuration parameter specifies the size of the workspace to be
used by the SQL compiler during SQL compilation. Memory corresponding to
stmtheap is allocated and released for every SQL statement handled.

� For dynamic SQL statements, this area is used during execution of the
program.

� For static SQL statements, this area is used only during bind process.

The default value is 2048 4 K pages, and this parameter is configurable online.

Note: If applications access LOBs without using LOB locators, the query heap
may need to be increased using a trial and error method.

 Chapter 3. Application design and system performance considerations 289

Performance considerations
Although the size of the statement heap does not influence the optimizer in
choosing different access paths, it can affect the amount of optimization
performed for complex SQL statements.

Setting stmtheap to a low value could result in sub-optimal plans if the DB2
optimizer has insufficient space to optimize the statement. In this case, the
optimizer may automatically drop to use a lower optimization class set of
strategies; a +437 (SQL0437W) warning with a reason code of 1 is given in such
cases. If it is not possible to compile or bind the statement with the current
stmtheap size, then the SQL0101N error is issued. Overconfiguring stmtheap can
result in wasted memory that could be better used in other heaps.

Best practices
We recommend the following best practices for tuning stmtheap:

1. For OLTP applications, where the SQL is fairly simple, the default value of
2048 4 KB pages should be sufficient.

2. For BI environments with very complex SQL statements, consider 4096 to
8192 pages as a good starting point and then tune it for optimal value.

Performance monitoring metrics
There are no metrics for monitoring this parameter.

When precompilations and binds receive SQL0101N messages, the stmtheap
should be increased in increments of 1024 pages until the SQL0101N messages
no longer appear.

Sometimes the query may be too complex to be compiled successfully with even
very large statement heaps; in this case, the query will need to be broken up into
smaller parts.

db2_reduced_optimization is a registry variable that tells the optimizer to avoid
certain optimization strategies at optimization class 5; the default setting is NO.
This registry variable lets you request either reduced optimization features or
rigid use of optimization features at the specified optimization level. If you reduce
the number of optimization techniques used, you also reduce time and resource
use during optimization. Although optimization time and resource use might be
reduced, the risk of producing a less than optimal data access plan is increased.
The strategies that are not considered are typically those that consume much
time and may not have a significant impact on the plan in most cases.

Consider enabling this parameter if compile time and memory used is a major
issue.

290 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

aslheapsz
This database manager configuration parameter specifies the application
support layer heap size, which represents a communication buffer between a
local application and its associated agent. This buffer is allocated as
agent/application shared memory by each database manager agent is started.

In addition to this communication buffer, this parameter is also used for two other
purposes:

� It is used to determine the I/O block size when a blocking cursor is opened.
This memory for blocked cursors is allocated out of the application’s private
address space, so you should determine the optimal amount of private
memory to allocate for each application program. If the database client cannot
allocate space for a blocking cursor out of an application’s private memory, a
non-blocking cursor will be opened.

� It is used to determine the communication size between agents and db2fmp
processes; a db2fmp process can be a user-defined function or a fenced
stored procedure. The number of bytes is allocated from shared memory for
each db2fmp process or thread that is active on the system.

aslheapsz is allocated when the database manager agent process is started for
the local application, and is deallocated when the database manager agent
process is terminated.

The data sent from the local application is received by the database manager
into a set of contiguous memory allocated from the query heap. The aslheapsz
parameter is used to determine the initial size of the query heap (for both local
and remote clients).

The default is 15 4 K pages, and this parameter is not configurable online.

Performance considerations
If the request to the database manager, or its associated reply, does not fit into
the buffer, they will be split into two or more send-and-receive pairs. The size of
this buffer should be set to handle the majority of requests using a single
send-and-receive pair.

You should also consider the effect of this parameter on the number and potential
size of blocking cursors. Large row blocks may yield better performance if the
number or size of rows being transferred is large (for example, if the amount of
data is greater than 4096 bytes). However, the trade-off is that the larger record
blocks increase the size of the working set memory for each connection.

Larger record blocks may also cause more fetch requests than are actually
required by the application. You can control the number of fetch requests using

 Chapter 3. Application design and system performance considerations 291

the OPTIMIZE FOR clause on the SELECT statement in your application as
described in “OPTIMIZE FOR n ROWS clause” on page 181.

Best practices
We recommend the following best practices for tuning aslheapsz:

1. If your application’s requests are generally small and the application is
running on a memory-constrained system, you may wish to reduce the value
of this parameter. If your queries are generally very large, requiring more than
one send and receive request, and your system is not constrained by
memory, you may wish to increase the value of this parameter.

2. Compute aslheapsz as follows if the information is available:

where “size of (x)” is the size of x in bytes that calculates the number of pages
of a given input or output value.

3. Allow aslheapsz to default to 15 4K pages, and then tune for optimal value.

Performance monitoring metrics
DB2 does not provide a direct mechanism to monitor and tune aslheapsz. You
instead need to monitor other elements in an application snapshot which
indirectly relate to aslheapsz. The monitoring elements of interest in an
application snapshot as generated by a get snapshot for applications
command are shown in Example 3-14.

Example 3-14 Snapshot showing block remote cursor information

Rejected Block Remote Cursor requests = 50
Accepted Block Remote Cursor requests = 1000

Note: The size of the request is based on the storage required to hold the
input SQLDA, all of the associated data in the SQLVARs, the output SQLDA,
and other fields which do not generally exceed 250 bytes.

aslheapsz = ((size of input SQLDA) + (size of each input SQLVAR) + (size
of output SQLDA) + 250))/4096

Important: All fields in the snapshot monitor, whether they are water marks,
counters or gauges, should be monitored over many representative intervals
spread over a few weeks, to detect consistent trends before reacting with
configuration changes.

Note that counter-type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

292 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The fields of interest in Example 3-14 on page 292 for tuning aslheapsz is:

� Rejected Block Remote Cursor requests is a counter that records the
number of times a request for an I/O block at the database server was
rejected and the request was converted to non-blocked I/O.

If there are many cursors blocking data, the communication heap may
become full. When this heap is full, an error is not returned; instead, no more
I/O blocks are allocated for blocking cursors. If cursors are unable to block
data, performance can be affected.

� Accepted Block Remote Cursor requests is a counter that records the
number of times a request for an I/O block at the database server was
accepted.

Compute the following metric for tuning purposes:

Consider increasing aslheapsz:

1. If PRBRR is consistently high, then query_heap_sz should also be increased
correspondingly.

2. When applications receive SQL1221N or SQL1222N messages, or see
DIA3605C in the db2diag.log, then increase aslheapsz incrementally until
these conditions do not reappear.

The number of send and receive requests occurring for a particular application
can be found by enabling the CLI trace facility. Refer to 2.6.1, “CLI/ODBC/JDBC
trace” on page 67 for more information on CLI trace.

rqrioblk
This database manager configuration parameter specifies the size of the
communication buffer between remote applications and their database agents on
the database server. When a database client requests a connection to a remote
database, this communication buffer is allocated on the client. On the database
server, a communication buffer of 32767 bytes is initially allocated, until a
connection is established and the server can determine the value of rqrioblk at
the client.

Once the database server knows this value, it will reallocate its communication
buffer if the client’s buffer is not 32767 bytes. In addition to this communication
buffer, this parameter is also used to determine the I/O block size at the database
client when a blocking cursor is opened. This memory for blocked cursors is

Percentage of rejected block remote requests (PRBRR) as follows:

PRBRR = ((Rejected Block Remote Cursor requests) / (Accepted Block Remote
Cursor requests + Rejected Block Remote Cursor requests)) * 100

 Chapter 3. Application design and system performance considerations 293

allocated out of the application’s private address space, so you should determine
the optimal amount of private memory to allocate for each application program. If
the database client cannot allocate space for a blocking cursor out of an
application’s private memory, a non-blocking cursor will be opened.

The communication buffer is allocated when:

� A remote client application issues a connection request for a server database.

� A blocking cursor is opened, additional blocks are opened at the client.

The communication buffer is deallocated when:

� The remote client application disconnects from the server database.

� The blocking cursor is closed.

The default value is 32767 bytes, and this parameter is not configurable online.

Performance considerations
The same considerations discussed with aslheapsz in “Performance
considerations” on page 291 apply here as well.

Best practices
The same considerations discussed with aslheapsz in “Best practices” on
page 292 apply here as well.

Performance monitoring metrics
The same considerations discussed with aslheapsz in “Performance monitoring
metrics” on page 292 apply here as well.

3.4.11 Miscellaneous considerations
There are a number of other, non-memory related considerations not explicitly
covered in the previous sections that also have an impact on system
performance, and should be tuned for optimal performance.

This section discusses some of the more important considerations as follows:

� reorg objects
� runstats collection
� intra_parallel and max_querydegree database manager configuration

parameters
� agentpri database manager configuration parameter

Note: aslheapsz relates to local application connections, while rqrioblk
applies to remote connections.

294 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� maxfilop database configuration parameter
� Configuration Advisor

reorg objects
The reorg utility re-establishes clustering and free space, and recovers unused
space. This provides good performance improvement and should be run
whenever a database object has become disorganized.

To determine whether a reorg is appropriate, DB2 provides a reorgchk utility
that calculates statistics on the database using eight different formulas to
determine if tables or indexes or both require reorg to be run.

Figure 3-45 shows the results of the reorgchk utility after it has invoked runstats
to update table statistics. The -** under the REORG column indicates that the
computed values for F2 and F3 for table DB2INST1.CONN_OLTP_CONNECTION (the >
symbol in the name represents the truncated portion of the name of the table)
exceed the bounds set for these formulas, indicating the need for a
reorganization. Similarly, the --* for the table DB2INST1.ADVISE_INDEX indicates
that the computed value for F3 exceeds the set bounds.

Figure 3-45 Output of REORGCHK command

For more information on reorgchk, and the formulas (F1 through F8), refer to
DB2 UDB Command Reference, SC09-4828, and to 4.6, “Reorg” on page 321 for
information about tuning the performance of the reorg utility.

runstats collection
Critical to the DB2 optimizer choosing an optimal access path for a query is the
need for up-to-date metadata about the target objects in the catalog tables.

 Chapter 3. Application design and system performance considerations 295

Generally, runstats should be run whenever significant changes have occurred
to the objects; this includes any of the following events:

� After the data has been initially loaded and statistics have never been run on
the table and indexes.

� When a new index is created on a populated table.

� When the table and index characteristics are changed using an ALTER
statement such as changing the prefetch size.

� After “significant” updates (INSERT/UPDATE/DELETE) have occurred to the
table. The percentage change may be any value upwards of 10%; a trial and
error mechanism may pinpoint the optimal percentage for a given object
based on the access path impact it has on queries accessing that object.

� After reorg is run on the table or index.

� After load is run on the table.

The options chosen must depend on the specific table and the application, and
may reduce the time it takes to collect statistics. In general:

� If the table is a very critical table in critical queries, is relatively small, or does
not change too much and there is not too much activity on the system itself,
then it may be worth spending the effort to collect statistics in as much detail
as possible.

� If the time to collect statistics is limited, and:

– The table is relatively large and/or changes a lot, it might be beneficial to
execute runstats limited to the set of columns that are used in predicates.
This way, you will be able to execute the runstats command more often.

– The effort to tailor the runstats command on a table by table basis is a
major issue, consider collecting statistics for the KEY columns only. It is
assumed that the index contains the set of columns that are critical to the
table and are most likely to appear in predicates.

� If there are many indexes on the table and collecting DETAILED (extended)
information on the indexes seems like a good idea, the SAMPLED option might
be considered in order to cut down on the time it takes to collect
statistics—this is very important in BI environments.

� If there is skew in certain columns and predicates of the type column =
constant, it may be beneficial to specify a larger NUM_FREQVALUES value for that
column

Note: Statistics may be collected during index creation using the COLLECT
....STATISTICS option.

296 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� For columns that have range predicates (for example column >= constant,
column BETWEEN constant1 AND constant2), it may be beneficial to specify
a larger NUM_QUANTILES value.

� If storage space is a concern and you cannot afford too much time on
collecting statistics, do not specify high NUM_FREQVALUES or NUM_QUANTILES
values for columns that are not used in predicates.

If index statistics are requested, and statistics have never been run on the table
containing the index, statistics on both the table and indexes are calculated.

For more information on runstats, refer to DB2 UDB Command Reference,
SC09-4828, and to 4.8, “Runstats” on page 326, for information about tuning the
performance of the runstats utility.

Intra_parallel and max_querydegree dbm cfg parameters
The intra_parallel database manager configuration parameter specifies
whether the database manager can use intra-partition parallelism12 for a query,
index creation, and utilities such as database load.

Besides enabling intra_parallel, set the dft_degree database configuration
parameter to -1 or ANY, which sets the default value for the CURRENT DEGREE
special register and the DEGREE bind option. If a query is compiled with DEGREE =
ANY, the database manager chooses the degree of intra-partition parallelism
based on a number of factors, including the number of processors and the
characteristics of the query. The actual degree of parallelism used at runtime
may be lower than the number of processors depending on these factors and the
amount of activity on the system. Parallelism may be lowered before query
execution if the system is heavily utilized in order to minimize adverse
performance impact on other database users.

Attention: Unlike the case of reorg with the reorgchk utility, determining
whether “significant” changes have occurred to a specific object in order to
trigger runstats is a non-trivial exercise, and requires routine monitoring
activity over time to identify the occurrence of events that need to trigger
runstats.

12 A query is divided into parts and executed in parallel at the same time within the database partition
if this parameter is enabled.

Attention: intra_parallel should only be enabled when the database server
has multiple CPUs.

 Chapter 3. Application design and system performance considerations 297

Another database configuration parameter that has an impact on query
performance is max_querydegree, which specifies the maximum degree of
intra-partition parallelism that may be used for any SQL statement executing at
database manager level. This parameter should be set to the number of CPUs in
the system to avoid the possibility of users inadvertently or intentionally setting
their CURRENT DEGREE register value or DEGREE bind option too high.

Best practices
We recommend the following best practices for tuning intra_parallel,
dft_degree, and max_querydegree:

1. For OLTP environments, set intra_parallel to NO since transactions query
small amounts of data, and parallelism would hurt rather than improve
performance.

2. For BI environments with the number of active users less than the number of
CPUs, set intra_parallel to YES, dft_degree to -1, and max_querydegree
to the number of CPUs, since queries tend to access very large amounts of
data and parallelism could significantly enhance performance.

agentpri
This database manager configuration parameter controls the priority given to all
agents, and other database manager instance processes and threads, by the
operating system scheduler. This includes both coordinating agents and
subagents, the parallel system controllers, and the FCM daemons when
intra-partition parallelism is enabled and/or the database is partitioned. This
priority determines how CPU time is given to the DB2 processes, agents, and
threads relative to the other processes and threads running on the machine.

When the parameter is set to -1 (the default), no special action is taken and the
database manager is scheduled in the normal way that the operating system
schedules all processes and threads.

When the parameter is set to a value other than -1, the database manager will
create its processes and threads with a static priority set to the value of this
parameter. This allows you to control the priority with which the database
manager processes and threads will execute on your machine, and potentially
increase database manager throughput.

The values for setting this parameter are dependent on the operating system on
which the database manager is running. For example, in a UNIX-based
environment, numerically low values yield high priorities. When the parameter is
set to a value between 41 and 125, the database manager creates its agents
with a UNIX static priority set to the value of the parameter. This is important in
UNIX-based environments because numerically low values yield high priorities

298 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

for the database manager, but other processes (including applications and users)
may experience delays because they cannot obtain enough CPU time.

The default is -1, and this parameter is not configurable online.

Performance considerations
For some dedicated database servers and non-dedicated database servers in
particular, increasing the priority of DB2 processes and threads may result in
significant performance benefits. However, this should be done with care
because the performance of other user processes can be severely degraded,
especially at very high CPU utilizations. The setting of this parameter should be
balanced with the other concurrent activity expected on the database server.

Best practices
We recommend the following best practices for tuning agentpri:

1. For dedicated database servers, the default value should provide good
performance since it provides a good compromise between response time to
other users/applications and database manager throughput.

2. For performance-critical OLTP and BI environments on dedicated or
non-dedicated database servers, consider using benchmarking techniques to
determine the optimum setting for this parameter. Increasing the priority of the
database manager processes and threads can have significant performance
benefits. However, it is necessary to benchmark both DB2 and
user/applications at different agentpri to get a optimal value.

Performance monitoring metrics
DB2 does not have a facility to monitor CPU utilization of DB2 processes and
threads; you need to use operating system tools for this purpose.

On AIX, consider using vmstat, sar, top for getting CPU information of DB2
process as described in 5.2.4, “Monitoring and problem determination tools” on
page 363, and the task manager in Windows as described in 5.3.4, “Monitoring
and problem determination tools” on page 387.

In tuning agentpri in a non-dedicated database server machine, investigate
sustained conditions where non-DB2 processes dominate CPU consumption
vis-a-vis DB2 processes and performance problems are being reported,
especially in a CPU resource-constrained13 environment. If CPU resource

Note: If you set this parameter to a non-default value on UNIX-based
platforms, you cannot use the DB2 governor to alter agent priorities.

13 Typically, you should aim for server steady state CPU utilization of less than 70%, as this provides
space capacity to cope with unexpected peak workloads.

 Chapter 3. Application design and system performance considerations 299

constraints cannot be alleviated through additional hardware, consider adopting
a trial and error approach to increasing agentpri in incremental steps until DB2
performance improves to your satisfaction. However, this will most likely degrade
the performance of non-DB2 processes, and appropriate trade-offs will have to
be made.

maxfilop
This database configuration parameter specifies the maximum number of file
handles that can be open for each database agent.

You can also use this parameter to ensure that the overall total of file handles
used by the database manager does not exceed the operating system limit by
limiting the number of handles per agent to a specific number; the actual number
will vary depending on the number of agents running concurrently.

SQL applications access one or more tables which in turn may use indexes, all of
which reside in SMS or DMS table spaces. Both SMS table spaces and DMS
table space file containers are treated as files in the database manager’s
interaction with the operating system, and file handles are required.

The database manager opens files for reading and writing into and out of the
buffer pool. If the limit is exceeded, one file will be closed before the new file is
opened. DB2 attempts to keep them open throughout to minimize the overhead
of opening and closing these files during SQL execution.

The default value is 64, and this parameter is configurable online.

Performance considerations
If opening a file by a database agent causes this value to be exceeded, some
files in use by this agent are closed. If maxfilop is too small, the overhead of
opening and closing files so as not to exceed this limit will become excessive and
may degrade performance. Having too many files open that are rarely
re-accessed consumes memory that may be better utilized elsewhere.

There is also another database manager configuration parameter maxtotfilop14
(does not apply to UNIX systems) which places a limit on the maximum number
of files that can be opened by all agents and other threads executing in a single

Note: Any process is limited to opening a certain number of files. This limit is
controlled by the ulimit command.

ulimit -a displays a quantity nofiles(descriptors), which is this limit. This
value can be changed.

14 The default is 16000, with a maximum value of 32768; this parameter is not configurable online.

300 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

database manager instance. If opening a file causes this value to be exceeded,
an SQL0931C error message is returned to the application. Therefore, having
too large a maxfilop with many concurrent agents can cause this limit to be
exceeded resulting in applications failing with the SQL0931C error message.

Best practices
We recommend the following best practices for tuning maxfilop:

1. The default value of 64 is unacceptable for most databases.

More files are generally used by SMS table spaces compared to the number
of containers used for a DMS file table space. Therefore, if you are using SMS
table spaces, you will need a larger value for this parameter compared to what
you would require for DMS file table spaces.

A value of 1500 is a good starting point, which can then be tuned for an
optimal value through trial and error.

2. The default value of 16000 for maxtotfilop is far too small for most
databases. Compute an appropriate number based on the maximum number
of concurrent applications (maxappls) and the estimated number of file
handles that could be opened by each application and choose this value to be
as follows:

maxtotfilop = maxappls * maxfilop

Ensure that (maxappls * maxfilop) does not exceed the operating system
limit on open files.

Performance monitoring metrics
DB2 only monitors the total number of files closed and does not provide a high
water mark of open files desired. It also does not monitor whether the
maxtotfilop limit was exceeded.

For non-UNIX systems, since applications receive the SQL0931C error message
when maxtotfilop is exceeded, this value must be incrementally increased until
there is not recurrence of the occurrence of the SQL0931C error message.

For maxfilop, monitoring metrics may be obtained from the get snapshot for
bufferpools command, as shown in Figure 3-32 on page 255.

The field of interest in tuning maxfilop is:

� Database files closed is a counter that records the total number of files
closed.

Note: The upper limit for UNIX is 1950; the upper limit for Windows is
32768.

 Chapter 3. Application design and system performance considerations 301

Consider increasing maxfilop incrementally until this field shows a zero value.

Configuration Advisor
The Configuration Advisor, as described in 2.5.1, “Configuration Advisor and
AUTOCONFIGURE” on page 54, provides a facility to set initial values for many
of the key database manager and database configuration parameters of existing
systems. However, monitoring key performance metrics and tuning them is key to
achieving optimal performance.

302 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Chapter 4. Command and utility
considerations

In this chapter we describe key command and utility considerations, and their
best practices for achieving superior DB2 performance.

The commands and utilities covered are:

� Backup
� Export
� Import
� Load
� Reorg
� Restore
� Runstats

4

© Copyright IBM Corp. 2004. All rights reserved. 303

4.1 Introduction
The objective of this chapter is to concentrate on identifying key considerations in
improving the performance of some of the main commands and utilities, and
providing best practices guidelines for optimizing the performance of their
execution.

For each command/utility of interest, we provide the following:

� A brief description of the command/utility
� A description of factors that impact the performance of the command/utility
� Best practices guidelines for achieving better performance

4.2 Backup
The backup command is used in conjunction with the restore command to
ensure recoverability of a database and/or table space.

The following subsections are organized as follows:

� Brief description
� Performance considerations
� Best practices

Attention: We assume that the DBA is familiar with the functionality of the
individual commands and utilities, and the considerations in using a specific
available feature or option; therefore, we do not discuss them here.

For example, we will not discuss the pros and cons of choosing between a full,
incremental, or delta table space copy, but we do discuss considerations for
improving the performance of full, incremental, and delta table space copies
after the choice has been made.

Important: With utilities in general, the objective is to reduce elapsed times
and CPU consumption. For offline utilities, it may be appropriate to focus on
reducing elapsed times while maximizing parallelism and CPU consumption.
Few monitoring elements are available in DB2 to monitor and tune the
performance of utilities, although some utilities such as import and export use
SQL that is instrumented with monitoring elements that can be exploited for
performance monitoring and tuning of these utilities.

Therefore, DBAs should rely on operating system facilities to monitor DB2
utility execution and employ a trial and error approach to tuning utilities for
optimal performance.

304 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

4.2.1 Brief description
The DB2 backup command supports the creation of full, incremental, and delta
backup images of databases and table spaces. It also provides support for the
use of parallelization during the backup process. A record of the backups is kept
in a recovery history file, and includes information such as the part of the
database that was copied, the type of copy, the time the copy was made, the
location of the copy, and the last log sequence number saved by the database
backup. The content of the recovery history file may be viewed by issuing the
list history command.

See IBM DB2 UDB Data Recovery and High Availability Guide and Reference,
SC09-4831 for further details.

4.2.2 Performance considerations
The performance of a backup operation depends upon a number of factors
including the volume of data, size and number of available buffers, parallelization,
number and speed of the media, and throttling1.

Backup tends to be I/O-bound, especially the target devices. The goal should be
to achieve full target device utilization, especially for tape devices where stalling
during I/O is very expensive. In general, reading from the database is much
faster than writing to the backup devices.

In general, the smaller the volume of data, the greater the size and number of
buffers, the exploitation of parallel execution, the use of multiple high speed
target devices, and specification of minimal throttling will yield superior
performance. However, this requires adequate system resources (CPU, I/O, and
memory) to be made available for backup, which may not be viable in some
environments.

4.2.3 Best practices
We recommend the following best practices to achieve superior backup
performance:

1 Throttling is a new feature in DB2 UDB V8 FP1 that enables you to limit a backup process from
consuming more than a certain percentage of available non-idle computing resources, so that the
performance impact on other concurrently running processes can be controlled.

Note: The util_heap_sz database configuration parameter specifies the
maximum database shared memory available for use by the backup, restore
and load utilities. An insufficient util_heap_sz specification may prevent
concurrent execution of these utilities.

 Chapter 4. Command and utility considerations 305

1. Reduce the volume of data to be backed up.

In general, the volume of data involved depends upon whether the granularity
of the backup is the entire database, or just some of the table spaces.

Table space-level backups tend to involve smaller volumes of data, and also
facilitate the management of table data, indexes, and long field data or large
objects (LOB) data in separate table spaces. However, the decision to choose
between a database or table space-level backup is dependent on factors
besides performance (such as availability), and is therefore not discussed
here.

Another backup option that may further reduce the volume of data to be
backed up is the choice of incremental or delta backups. The decision to
choose incremental/delta backups should be based on the percentage of
changed data relative to the total volume of data in the database or table
space. The smaller the percentage, the smaller is the volume of data to be
backed up, and therefore the better the performer.

2. Increase the backup buffer size.

The BUFFER buffer-size parameter specifies the size in 4 KB pages to be used
in building the backup image. The default value is 1024, which is 4 MB.

– For table spaces, the backup buffer size should be a multiple of the table
space extent size +1. If multiple table spaces with different extent sizes are
being backed up, then choose a value that is a multiple of the largest
extent size.

buffer size = ((N x ((extent size) x (number of containers)) + 1)

where N is an integer.

The extent size of a table space can be determined by issuing the
following command:

db2 list tablespaces show detail

In general, the larger the buffer size the better, except when the backup is
to a tape device, in which case smaller buffers should be specified.

3. Increase the number of backup buffers

Note: If the backup image is written to tape with a variable block size,
reduce the buffer size to within the range that the tape device supports.
Otherwise, even though the backup operation may succeed, the resulting
image may not be recoverable. The SQL2058W message is generated
when the block size is larger than the block size supported by the tape
device.

306 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Incrementally increase the number of buffers until no performance
improvements are observed (this is a trial and error exercise).

4. Increase the value of the PARALLELISM parameter.

This parameter defines the number of processes (UNIX) or threads
(Windows) that are started when reading data from the database (the default
is 1).

Each process or thread is assigned to a specific table space. When it finishes
backing up this table space, it requests another. Each process or thread
incurs both memory and CPU overhead.

Choose a value that corresponds to the number of table spaces being backed
up as well as the number of CPUs.

When there are a very large number of table spaces involved that exceed the
number of backup target devices, then having a parallelism value greater than
the number of target devices is only beneficial when the table space
containers are highly utilized such that they are individually slower than the
backup target devices. Typically, parallelism should be less than or equal to
the number of target devices.

5. Use multiple high speed target devices.

The backup image can made to span multiple targets using the TO dir/dev
parameter. These targets will be written to in parallel, thereby speeding up the
backup operation. It is preferable to initially back up to high speed disks, and
later move the backups to tape at the earliest convenient time.

6. No throttling.

The default is no throttling.

4.3 Export
The export command exports data from a DB2 database to one of several
external formats, for subsequent import into other databases.

Note: If multiple I/O channels are available for the backup image, choose
at least twice the number of buffers as channels to ensure that the
channels do not wait for data.

Note: In a resource-constrained or heavily loaded system, consider
staying with the default value of 1.

 Chapter 4. Command and utility considerations 307

The following subsections are organized as follows:

� Brief description
� Performance considerations
� Best practices

4.3.1 Brief description
The export command is used to write data from a DB2 database to one or more
files stored outside of the database. The exported data can then be imported or
loaded into the same or different DB2 database (using the DB2 import or the
DB2 load utility, respectively), or it can be imported into another application (for
example, a spreadsheet).

The data to be exported can be specified by a SELECT statement, or by
providing hierarchical information for typed tables.

Following is an example of the export command:

db2 export to staff.ixf of ixf select * from userid.staff

The export utility is an embedded SQL application and does SQL fetches
internally.

See IBM DB2 UDB Data Movement Utilities Guide and Reference, SC09-4830
for further details.

4.3.2 Performance considerations
The following performance considerations apply:

� Since the export utility does SQL fetches internally, all optimizations available
to SQL operations apply to export as well, such as large buffer pools,
indexing, and sort heaps.

� Minimize device contention on the output files.

4.3.3 Best practices
We recommend the following best practices to achieve superior export
performance.

Note: When LOBs are involved, multiple paths may be provided to store LOB
data to avoid out-of-space conditions in the file system.

308 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

1. Ensure that all considerations applicable to tuning dynamic SQL statements
are in place for the SQL used in the export command. Refer to 3.3.6, “Writing
efficient SQL” on page 155 for SQL tuning for specific details.

2. Place the output files away from the containers and log devices in order to
minimize contention.

4.4 Import
The import command inserts data from an input file generated by the export
command into a table, hierarchy, or updateable view.

The following subsections are organized in this way:

� Brief description
� Performance considerations
� Best practices

4.4.1 Brief description
The import utility may either append to or replace the data in the target
table/view.

The import utility is an embedded SQL application and does SQL inserts
internally.

See IBM DB2 UDB Data Movement Utilities Guide and Reference, SC09-4830
for further details.

4.4.2 Performance considerations
The following performance considerations apply:

� Since the import utility does SQL inserts internally, all optimizations available
to SQL inserts apply to import as well, such as large buffer pools and block
buffering.

� By default, automatic commits are not performed, and import will issue a
commit at the end of a successful import. While fewer commits improve
overall performance in terms of CPU and elapsed time, they can negatively
impact concurrency and restartability of import in the event of failure. In the
case of a mass import, log space consumption could also become an issue
and result in log full conditions, in some cases.

The COMMITCOUNT n parameter specifies that a commit should be performed
after every n records are imported. The default value is zero.

 Chapter 4. Command and utility considerations 309

� By default, import inserts one row at a time into a target block and checks for
the return code. This is less efficient that inserting a block at a time.

The MODIFIED BY COMPOUND = x parameter (where x is a number between 1
and 100, inclusive) uses non-atomic compound SQL to insert the data, and x
statements will be attempted each time. The import command will wait for the
SQL return code about the result of the inserts after x rows instead of the
default one row. If this modifier is specified, and the transaction log is not
sufficiently large, the import operation will fail.

The transaction log must be large enough to accommodate either the number
of rows specified by COMMITCOUNT, or the number of rows in the data file if
COMMITCOUNT is not specified. It is therefore generally recommended to use
COMMITCOUNT along with COMPOUND in order to avoid transaction log overflows.

� load is generally faster than import, but it does not support loading data at
the hierarchy level. The import utility has other advantages such as firing
triggers, clustered index support and concurrent maintenance of constraints,
materialized query tables and referential integrity.

See Appendix B, “Differences between the Import and Load Utility” in IBM
DB2 UDB Data Movement Utilities Guide and Reference, SC09-4830, for
further details.

4.4.3 Best practices
We recommend the following best practices to achieve superior import
performance.

1. Ensure that all considerations applicable to tuning SQL inserts are applied
including the specification of very large buffer pools and buffered inserts.
Refer to 3.3.6, “Writing efficient SQL” on page 155 for SQL tuning for specific
details.

2. In a partitioned database environment, enable the import utility to use
buffered inserts. This reduces the messaging that occurs when data is
imported, resulting in better performance. However, since details about a
failed buffered insert are not returned, this option should only be enabled if
one is not concerned about error reporting.

Use the DB2 bind utility to request buffered inserts. The import package,
db2uimpm.bnd, must be rebound against the database using the INSERT
BUF option.

For example:

db2 connect to your_database
db2 bind db2uimpm.bnd insert buf

310 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

4.5 Load
The load utility moves data from files, named pipes, devices, or a cursor into a
DB2 table.

The following subsections are organized in this way:

� Brief description
� Performance considerations
� Best practices

4.5.1 Brief description
The load utility is capable of efficiently moving large quantities of data into newly
created tables, or into tables that already create contain data. If the table
receiving the new data already contains data, you can replace or append to the
existing data. The load utility can handle most data types, including large objects
(LOBs) and user-defined data types (UDTs).

The SET INTEGRITY statement has to be executed against the table to validate
referential or table constraints.

The load process consists of four distinct phases, as follows:

1. Load phase during which the data is written to the table. During this phase,
data is loaded into the table, and index keys and table statistics are collected,
if necessary. Save points, or points of consistency, are established at intervals
specified through the SAVECOUNT parameter in the LOAD command. Messages
are generated, indicating how many input rows were successfully loaded at
the time of the save point.

While the load operation is taking place, the target table is in the “load in
progress” state. If the table has constraints, the table will also be in the “check
pending” state. If the ALLOW READ ACCESS option was specified, the table will
also be in the “read access only” state.

2. Build phase during which indexes are produced. During the build phase,
indexes are produced based on the index keys collected during the load
phase. The index keys are sorted during the load phase, and index statistics
are collected (if the STATISTICS YES with INDEXES option was specified). The
statistics are similar to those collected through the RUNSTATS command. If a

Note: The load utility does not fire triggers, and does not perform referential or
table constraints checking; instead, it only validates the uniqueness constraint
of indexes.

 Chapter 4. Command and utility considerations 311

failure occurs during the build phase, the RESTART option automatically
restarts the load operation at the appropriate point.

3. Delete phase during which the rows that caused a unique key violation or a
DATALINK violation are removed from the table. Unique key violations are
placed into the exception table (if one was specified), and messages about
rejected rows are written to the message file. Following the completion of the
load process, these messages should be reviewed for problems—and any
problems found should be resolved—before re-inserting the corrected rows
back into the table.

4. Index copy phase during which index data is copied from a system
temporary table space to the original table space. This will only occur if a
system temporary table space was specified for index creation during the load
operation with the READ ACCESS option specified.

See IBM DB2 UDB Data Movement Utilities Guide and Reference, SC09-4830,
for further details.

4.5.2 Performance considerations
The performance of the load utility depends on the nature and the quantity of the
data, the number of indexes, and the load options specified such as ANYORDER,
BINARY NUMERICS and PACKED DECIMAL, COPY YES or NO, CPU_PARALLELISM,
DATA BUFFER, DISK_PARALLELISM, FASTPARSE, NONRECOVERABLE,
NOROWWARNINGS, ALLOW READ ACCESS, SAVECOUNT, STATISTICS YES, USE
<tablespace>, and WARNINGCOUNT.

The following performance considerations apply:

� The load utility takes advantage of a hardware configuration in which multiple
processors or multiple storage devices are used, such as in a symmetric
multiprocessor (SMP) environment.

There are several ways in which parallel processing of large amounts of data
can take place using the load utility, as follows:

– One way is through the use of multiple storage devices, which allows for
I/O parallelism during the load operation. The load utility
DISK_PARALLELISM parameter specifies the number of processes or
threads used to parse, convert, and format data records.

Note: The load utility is usually faster than the import utility because it writes
formatted pages directly into the database, while the import utility performs
SQL INSERTs.

312 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

– Another way involves the use of multiple processors in an SMP
environment, which allows for intra-partition parallelism. Both can be used
together to provide even faster loading of data; the load utility
CPU_PARALLELISM parameter specifies the number of processes or
threads used to write data records to disk.

� Index creation performance depends the efficiency of the sort process which
is in turn controlled by the sort heap (database configuration sortheap
parameter), size of the buffer pool for the temporary table space, and the
distribution of the temporary table space across multiple containers. Sort
performance considerations are discussed 3.4.9, “Sort considerations” on
page 275.

� Load performance can be improved by installing high performance sorting
libraries from third party vendors to create indexes during load.

� The amount of data buffers (specified via the load utility DATA BUFFER
parameter) allocated can have a significant impact on the I/O waiting time
performance of the load utility especially when LOBs are involved. These
buffers are allocated from the utility heap as specified by the database
configuration util_heap_sz parameter.

� The load utility optionally supports concurrent indexing and statistics
collection during the load process via the COPY YES or NO and STATISTICS
YES parameters, respectively. Specifying these options will slow down the
performance of the load process (including the potential impact on
concurrency in case the load utility ALLOW READ ACCESS parameter is not
chosen), but it needs to be evaluated in the context of overall performance
should the load be serialized with a execution of the backup and runstats
utilities.

� The individual load utility options can be tuned for superior performance
provided their invocation does not compromise the functionality desired of the
load process. These options are discussed in “Best practices” on page 308.

4.5.3 Best practices
We discuss best practices for achieving superior load performance from the
following two perspectives:

� General best practices which apply regardless of the specific activity
involved.

� Task-specific best practices for each specific activity such as performing
combining multistep operations, building indexes, or loading an MDC table.

General best practices
The following general best practices are recommended:

 Chapter 4. Command and utility considerations 313

1. Consider allowing the load utility to choose values for DISK_PARALELLISM,
CPU_PARALLELISM, and DATA BUFFER parameters before attempting to tune
them for your particular needs. The utility attempts to deliver the best
performance possible by determining optimal values for these parameters
based on the size and free space available in the utility heap.

2. Consider using the TEMPFILES PATH parameter for the location of the
temporary files, if better I/O can be performed in another directory. The default
is the database path.

3. Index creation performance is impacted by the database manager
configuration parameter sheapthres, and the database configuration
parameter sortheap, as well as the number and placement of the temporary
table space containers. Performance considerations relating to these factors
are discussed in 3.4.9, “Sort considerations” on page 275.

Consider installing high performance sorting libraries from third party vendors
to create indexes during the load operation. The DB2SORT environment
variable (registry value) specifies the location of the sorting library to be used
at run time.

4. The following load utility options may be tuned for superior performance in
specific scenarios:

– ANYORDER

Specifying this file type modifier suspends the preservation of order in the
data being loaded, and improves performance. This only applies when
INTRA_PARALLEL is set to YES.

– BINARY NUMERICS and PACKED DECIMAL

These file modifiers improve load performance when loading positional
numeric ASC data into fixed-length records.

– COPY YES or NO

This parameter specifies whether or not a copy of the input data should be
made during the load operation.

• COPY YES reduces load performance, because of the increased I/O
activity on an I/O-bound system as the input data is copied during the
load operation. Distributing the I/O across multiple devices or
directories on different disks can offset some of the performance
penalty resulting from this operation.

Note: If the data to be loaded is presorted, the ANYORDER may not
preserve the presorted order, and thereby negatively impact the
performance of some queries.

314 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Note that forward recovery (database configuration parameters
LOGRETAIN RECOVERY or USREXIT YES) must be enabled.

• COPY NO results in the table being placed in backup pending state,
therefore requiring the database, or selected table spaces, to be
backed up before the table can be accessed. This may reduce the
overall performance of a table that needs to be loaded and backed up
before being used.

– CPU_PARALLELISM

This parameter can significantly improve load performance by exploiting
intra-partition parallelism. It specifies the number of processes or threads
used by the load utility to parse, convert, and format data records. The
maximum number allowed is 30.

If there is insufficient memory to support the specified value, the utility
adjusts the value accordingly.

The order of data in the input source is preserved regardless of the value
of this parameter.

We recommend staying with the default.

– DATA BUFFER

This parameter specifies the total amount of memory allocated to the load
utility as a buffer. The DATA BUFFER parameter is useful when working with
large objects (LOBs), and reduces I/O waiting time. The data buffer is
allocated from the utility heap (util_heap_sz database configuration
parameter whose default value is 5000 4 KB pages).

We recommend the following for the data buffer and utility heap:

• Choose the data buffer to be several extents in size.

• Because load is only one of several utilities that use memory from the
utility heap, it is recommended that no more than fifty percent of the
pages defined by this parameter be available for the load utility.

Note: If this parameter is not specified, the load utility selects a default
value that is based on the number of CPUs on the system.

Restriction: Although use of this parameter is not restricted to
symmetric multiprocessor (SMP) hardware, it is unlikely that any
discernible performance benefit will be observed in a non-SMP
environments.

 Chapter 4. Command and utility considerations 315

• Depending on the amount of storage available on your system, you
should consider allocating more memory for use by the DB2 utilities.

– DISK_PARALLELISM

This parameter can significantly improve load performance by exploiting
parallel I/O against available containers. It specifies the number of
processes or threads used by the load utility to write data records to disk.
The maximum number allowed is the greater of four times the
CPU_PARALLELISM value actually used by the load utility, or 50.

By default, DISK_PARALLELISM is equal to the sum of the table space
containers on all table spaces containing objects for the table being
loaded, except where this value exceeds the maximum number allowed.

We recommend staying with the default.

– FASTPARSE

This file type modifier can enhance performance by reducing the data
checking that is performed on user-supplied column values.

– NONRECOVERABLE

This parameter will make the data/transactions loaded non-recoverable.
Load performance is enhanced, because no additional activity beyond the
movement of data into the table is required. At the end of the load
operation, the table spaces are not in backup pending state.

– NOROWWARNINGS

This file type modifier suppresses the recording of warnings about rejected
rows, and can enhance performance when a large number of warnings are
anticipated.

– SAVECOUNT

This parameter sets an interval for the establishment of consistency points
during a load operation. A LOAD RESTART operation will automatically

Note: This option should only be used when the data being loaded is
known to be valid.

Note: When these non-recoverable transactions are encountered
during a subsequent restore and rollforward recovery operation, the
table is not updated, and is marked “invalid”. Further actions against
this table are ignored. After the rollforward operation is complete, the
table can either be dropped or a LOAD TERMINATE command can be
issued to bring it back online.

316 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

continue from the last consistency point. The synchronization of activities
performed to establish a consistency point takes time. If done too
frequently, there will be a noticeable reduction in load performance.

We recommend that when a large number of rows are to be loaded, a
large SAVECOUNT value be specified, for example, a value of ten million
when 100 million rows are being loaded.

– STATISTICS YES

This parameter specifies that data distribution and index statistics be
collected during the load operation.

While the load operation is slower with this option (particularly when
DETAILED INDEXES ALL is specified), the overall performance of a single
step load with statistics gathering is more efficient than a multi-step
operation involving a load operation followed by a runstats operation.

We recommend that when loading data into large tables, a larger value be
chosen for the database configuration statistics heap size parameter
stat_heap_sz. This parameter specifies the maximum size of the heap
used in collecting statistics using the runstats command.

– USE <tablespaceName>

This parameter allows an index to be rebuilt in a system temporary table
space and copied back to the index table space during the index copy
phase of a load operation. When a load operation in ALLOW READ ACCESS
mode fully rebuilds the indexes, the new indexes are built as a shadow.
The original indexes are replaced by the new indexes at the end of the
load operation.

Note: The default value of stat_heap_sz is appropriate when no
distribution statistics are collected (not the case when STATISTICS YES
is chosen), or when distribution statistics are only being collected for
relatively narrow tables.

Note: The USE <tablespaceName> option is only supported for the
INDEXING MODE REBUILD or INDEXING MODE AUTOSELECT options. If the
INDEXING MODE AUTOSELECT option is specified and the load utility
selects incremental maintenance of the indexes, the USE
<tablespaceName> option will be ignored.

The USE <tablespaceName> option is ignored if the load operation is not
in ALLOW READ ACCESS mode, or if the indexing mode is incompatible.

 Chapter 4. Command and utility considerations 317

By default, the shadow index is built in the same table space as the
original index. If the shadow index is built in the same table space as the
original index, the original index will be instantaneously replaced by the
shadow. Since both the original index and the new index are maintained
simultaneously, there must be sufficient table space to hold both indexes
at the same time. If the load operation is aborted, the extra space used to
build the new index is released. If the load operation commits, the space
used for the original index is released and the new index becomes the
current index. When the new indexes are built in the same table space as
the original indexes, replacing the original indexes will take place almost
instantaneously.

However, if the shadow index is built in a system temporary table space,
the load operation will require an index copy phase, which will copy the
index from a system temporary table space to the index table space. There
will be considerable I/O involved in the copy.

We recommend staying with the default.

– WARNINGCOUNT

This parameter specifies the limit on the number of warnings returned by
the utility before the load operation is forced to terminate.

This parameter does not have a direct impact on load performance, but it
allows you to terminate a load operation when an unexpectedly large
number of warnings are encountered, thus avoiding having to wait until the
end of the load to operation to become aware of the problem.

We recommend that you set this value to the approximate number of
warnings expected when only a few warnings are expected (twenty, when
no warnings are expected). This gives you the opportunity to correct data
(or to drop and then recreate the table being loaded) before attempting to
complete the load operation.

Note: If the indexes are built in a DMS table space, the new shadow
index cannot be seen by the user. If the indexes are built within an SMS
table space, the user may see index files in the table space directory
with the .IN1 suffix and the .INX suffix. These suffixes do not indicate
which is the original index and which is the shadow index

Note: To make sure that there is sufficient space in the original index
table space, space is allocated in the original table space during the
build phase. Therefore, if the load operation is going to run out of index
space, it will do it during the build phase. If this happens, the original
index will not be lost.

318 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Task-specific best practices
We recommend the following best practices for:

� Combining multistep operations
� Building indexes
� Loading an MDC table

Combining multistep operations
As described earlier, the load utility supports concurrent execution of other
operations such as taking a backup copy using the COPY YES or NO parameter,
and collecting statistics using the STATISTICS YES parameter. You could also
consider creation of indexes during load in the same category, since you have
the choice of loading data in a step separate from index creation.

In general, the adoption of other concurrent operations during the load execution
tends to slow down load performance. However, you need to compare this load
performance with achieving the same requirements via a multistep operation
involving load followed by a backup and/or runstats operation. With such a
comparison, the concurrent load plus operations always outperforms the
performance of multistep operations.

We therefore recommend that if permitted, concurrent operations be performed
during load, after ensuring that adequate resources are provided to enhance the
performance of concurrent operations, such as allocating adequate
stat_heap_sz, util_heap_sz, sortheap, sortheapthres and buffer pool for
the system temporary table space. In summary:

� Specify COPY YES.

� Specify STATISTICS YES.

� Create indexes during the load operation rather than via a multistep operation
involving a load followed by CREATE INDEX.

Building indexes
Indexes are built during the build phase of a load operation. There are four
indexing modes that can be specified in the LOAD command:

1. REBUILD will result in all indexes being rebuilt.

2. INCREMENTAL will cause all indexes to be extended with new data.

3. AUTOSELECT allows the load utility to automatically decide between REBUILD or
INCREMENTAL mode (this is the default).

4. DEFERRED specifies that the load utility should not attempt index creation;
indexes will be marked as needing a refresh, and a rebuild may be forced the
first time they are accessed.

 Chapter 4. Command and utility considerations 319

The main performance considerations are summarized as follows:

� Index creation performance can be significantly impacted by the amount of
memory dedicated to the sorting of index keys during the load operation as
specified by the database configuration parameter sortheap. If sort
overflows cannot be avoided, then it is important that the buffer pool for the
system temporary table spaces to be large enough to minimize the amount of
disk I/O that overflows case.

Furthermore, to achieve I/O parallelism during the merging2 of sort runs, it is
recommended that temporary table spaces be declared with multiple
containers, each residing on a different disk drive. 3.4.9, “Sort considerations”
on page 275 describes sort considerations in greater detail.

The use of high performance sorting libraries from third party vendors to
create indexes during the load operation can also enhance performance; the
DB2SORT environment variable (registry value) specifies the location of the
sorting library to be loaded at run time.

� In most cases, it is more efficient to update the indexes during the load
operation than to invoke the CREATE INDEX statement for each index after the
load. See “Combining multistep operations” on page 319 for further details.

� Creating shadow indexes in a separate temporary table space saves space in
the table space containing the index, but it incurs the overhead of the index
copy phase, which may not be acceptable.

Loading an MDC table
MDC tables are supported by a new physical structure that combines data,
special kinds of indexes, and a block map. Therefore, MDC load operations will
always have a build phase since all MDC tables have block indexes.

During the load phase, extra logging (approximately two extra log records per
extent allocated) for the maintenance of the block map is performed. A system
temporary table with an index is used to load data into an MDC tables. The size
of the system temporary table is proportional to the number of distinct cells
loaded. The size of each row in the table is proportional to the size of the MDC
dimension key.

Note: This option is not compatible with the ALLOW READ ACCESS option,
because it does not maintain the indexes—and index scanners require a
valid index.

2 If an index is so large that it cannot be sorted in memory, a sort overflow occurs. That is, the data is
divided among several “sort runs” and stored in a temporary table space that will be merged later.

320 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

We recommend the following to enhance the performance of loading an MDC
table:

1. Consider increasing the database configuration parameter logbufsz to a
value that takes into account the additional logging for the maintenance of the
block map.

2. Ensure that the buffer pool for the temporary table space is large enough in
order to minimize I/O against the system temporary table.

3. Increase the size of the database configuration parameter util_heap_sz by
10-15% more than usual in order to reduce disk I/O during the clustering of
data that is performed during the load phase.

4. When the DATA BUFFER option of load command is specified, its value should
also be increased by 10-15%. If the load command is being used to load
several MDC tables concurrently, the util_heap_sz database configuration
parameter should be increased accordingly.

4.6 Reorg
A reorg can be used to improve clustering, regain free space, and eliminate
overflow rows.

The following subsections are organized in this way:

� Brief description
� Performance considerations
� Best practices

4.6.1 Brief description
The DB2 reorg utility is used to reorder the physical layout of data within DB2
tables and indexes. It also reclaims the space of deleted keys in type 2 indexes.

If the name of an index is specified as part of the reorg command, the database
manager reorganizes the data according to the order in the index3. If the name of
an index is not specified, and if a clustering index exists, the data will be ordered

Note: DB2 supplies the reorgchk command to assist in determining whether
tables and/or indexes need to be reorganized. reorgchk allows you to use the
current catalog statistics (last updated when the last RUNSTATS was run), or
reorgchk can invoke runstats as part of reorgchk processing.

3 Typically the index chosen is the one that is most often used in SQL queries.

 Chapter 4. Command and utility considerations 321

according to the clustering index. If you do not specify the name of an index and
no clustering index exists, the records are reorganized without regard to order.

See IBM DB2 UDB Command Reference, SC09-4828, for further details.

4.6.2 Performance considerations
The performance of reorg depends upon the volume of data, number of indexes
involved, and the availability of space within the table space holding the table
being reorganized.

The following performance considerations apply:

� When a number of indexes are associated with a table being reorganized, the
amount of memory available to sort the index keys will have a significant
impact on performance.

� If there is not enough space within the table space to hold the table being
reorganized, then a separate temporary table space needs to be specified.

� Parallelism of the index recreation can significantly impact the performance of
reorg.

� A table that has LOB or LONG data types can have a significant negative impact
on reorg performance.

� Reorganizing via a low clusterratio clustering index can be very slow since it
is chosen as the access path to the data, and significant random I/Os to the
data may occur.

4.6.3 Best practices
We recommend the following best practices to achieve superior reorg
performance:

1. Ensure that adequate memory is available for sorting by adjusting the
database manager sortheapthres parameter, and the database
configuration sortheap parameter. Additionally, the buffer pool for the
temporary table space should be made large enough to minimize I/O to disk
in case sort overflows can not be avoided. Furthermore, to achieve I/O
parallelism during the merging of sort runs, it is recommended that temporary
table spaces be declared with multiple containers, each residing on a different
disk drive. 3.4.9, “Sort considerations” on page 275 describes sort
considerations in greater detail.

2. reorg can benefit from parallelism enabled via the database manager
configuration INTRA_PARALLEL parameter—but you need to fully understand
the DB2 instance-wide repercussions of resource consumption when this

322 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

parameter is enabled. This is not recommended in resource-constrained
environments.

3. For tables with LOB or LONG data types, consider setting the DB2 registry
variable DB2REORGDATAONLY=ON. This will bypass the reorganizing of LOB or
LONG data.

Note: A drawback of using DB2REORGDATAONLY would be that free space from
deleted entries contained within the LOB or LONG table space would not be
reclaimed.

4. Consider reorganizing the table more frequently to avoid reorg performance
degradation due to low clusterratio clustering index access. In fact, the
clusterratio of the clustering index (if one is present) should be monitored
closely and reorganized promptly when slippage occurs below 95% in order
to ensure the performance of SQL queries that would benefit from this access
path.

4.7 Restore
The restore command is used in conjunction with the backup command to
ensure recoverability of a database and/or table space.

The following subsections are organized in this way:

� Brief description
� Performance considerations
� Best practices

4.7.1 Brief description
The restore command is used to bring back a former database image that was
backed up using the backup command. The restore can be at the database or
table space level.

See IBM DB2 UDB Data Recovery and High Availability Guide and Reference,
SC09-4831, for further details.

4.7.2 Performance considerations
The performance of a restore operation depends upon the size and number of
available restore buffers, parallelization, and throttling.

In general, the greater the size and number of restore buffers, the exploitation of
parallel execution and the specification of minimal throttling will yield superior
performance. However, this requires adequate system resources (CPU, I/O and

 Chapter 4. Command and utility considerations 323

memory) to be made available for backup, which may not be viable in some
environments.

4.7.3 Best practices
We recommend the following best practices to achieve superior restore
performance; these are very similar to the recommendations made for the backup
command.

1. Increase the restore buffer size

The BUFFER buffer-size parameter specifies the size in 4 KB pages to be used
in restoring the backup image (the default value is 1024).

The restore buffer size should be an integer multiple of the backup buffer size
specified during the backup operation.

To determine the buffer size used in creating the backup image, issue the
following command:

db2ckbkp -h <filename of backup image>

Example 4-1 shows the sample output of such a command.

Example 4-1 Determining backup buffer size

db2ckbkp -h SAMPLE2.0.krodger.NODE0000.CATN0000.19990818122909.001
=====================
MEDIA HEADER REACHED:
=====================
Server Database Name --SAMPLE2
Server Database Alias --SAMPLE2
Client Database Alias --SAMPLE2
Timestamp --19990818122909
Database Partition Number --0
Instance --krodger
Sequence Number --1
Release ID --900
Database Seed --65E0B395
DB Comment ’s Codepage (Volume)--0

Note: The util_heap_sz database configuration parameter specifies the
maximum database shared memory available for use by the backup, restore
and load utilities. An insufficient util_heap_sz specification may prevent
concurrent execution of these utilities.

Note: If an incorrect buffer size is specified, the buffers allocated will be the
smallest acceptable size.

324 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

DB Comment (Volume)--
DB Comment ’s Codepage (System)--0
DB Comment (System)--
Authentication Value --255
Backup Mode --0
Backup Type --0
Backup Gran.--0
Status Flags --11
System Cats inc --1
Catalog Database Partition No.--0
DB Codeset --ISO8859-1
DB Territory --
Backup Buffer Size --4194304
Number of Sessions --1
Platform --0
The proper image file name would be:
SAMPLE2.0.krodger.NODE0000.CATN0000.19990818122909.001
[1]Buffers processed:####
Image Verification Complete -successful.

2. Increase the number of buffers.

Incrementally increase the number of restore buffers until no performance
improvements are observed (this is a trial and error exercise).

3. Increase the value of the PARALLELISM parameter.

This parameter defines the number of buffer manipulators (BM) that will be
used to write to the database/table space during the restore operation. The
default is 1.

Each BM is assigned to a specific table space. When it finishes restoring this
table space, it requests another. Each BM incurs both memory and CPU
overhead.

During restore, it is reasonable to assume that pages can be written to table
space containers faster than they can be read from the backup images
sources. As long as this assumption is true, then a parallelism value that is
less than the number of sources may cause the backup image I/O to halt
temporarily (a parallelism value that is greater than the number of backup
image sources offers diminishing returns at some small cost). Choose a
parallelism value equal to the number of backup image sources.

4. No throttling

The default is no throttling.

 Chapter 4. Command and utility considerations 325

4.8 Runstats
The runstats command collects statistics about the physical characteristics of a
table and its associated indexes and records them in the system catalog. These
characteristics include the number of records, number of pages, average record
length, and data distribution statistics.

The following subsections are organized as follows:

� Brief description
� Performance considerations
� Best practices

4.8.1 Brief description
The runstats utility gathers statistics about data within DB2 tables and indexes,
and these statistics are used by the DB2 optimizer to generate optimal query
access plans.

The following key options impact the performance of the runstats utility, but
provide detailed statistics of significant benefit to the DB2 optimizer in its access
path selection:

� WITH DISTRIBUTION clause
� DETAILED clause
� LIKE STATISTICS clause

WITH DISTRIBUTION clause
The runstats utility, by default, collects information about the size of the table,
the highest and lowest values in the index(es), the degree of clustering of the
table to any of its indexes, and the number of distinct values in indexed columns.
However, when the optional WITH DISTRIBUTION clause is specified, the runstats
utility collects additional information about the distribution of values between the
highest and lowest values, as well.

The DB2 optimizer can exploit this additional information to provide superior
access paths to certain kinds of queries when the data in the table tends to be
skewed.

DETAILED clause
The runstats utility also provides an optional DETAILED clause which collects
statistics that provide concise information about the number of physical I/Os
required to access the data pages of a table if a complete index scan is
performed under different buffer sizes. As runstats scans the pages of the index,
it models the different buffer sizes, and gathers estimates of how often a page

326 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

fault occurs. For example, if only one buffer page is available, each new page
referenced by the index results in a page fault.

In a worse case, each row might reference a different page, resulting in at most
the same number of I/Os as rows in the indexed table. At the other extreme,
when the buffer is big enough to hold the entire table (subject to the maximum
buffer size), then all table pages are read once.

This additional information helps the optimizer make better estimates of the cost
of accessing a table through an index.

The SAMPLED option, when used with the DETAILED option, allows runstats
to employ a CPU sampling technique when compiling the extended index
statistics. If this option is not specified, every entry in the index is examined to
compute the extended index statistics.

LIKE STATISTICS clause
This optional clause collects additional column statistics (SUB_COUNT and
SUB_DELIM_LENGTH in SYSSTAT.COLUMNS) for string columns only.

This additional information helps the DB2 optimizer make better selectivity
estimates for predicates of the type “column_name LIKE ‘%xyz’” and “column_name
LIKE ‘%xyz%’”, and thereby generate a superior access path for the query.

4.8.2 Performance considerations
The performance of the runstats utility depends upon the volume of data, the
number of indexes associated with it, and the degree of detailed information
requested via the WITH DISTRIBUTION and DETAILED clauses.

The following performance considerations apply:

� The runstats utility collected statistical information is critical to the DB2
optimizer’s selection of an optimal access path, and it is therefore imperative
that such information be kept up to date. However, runstats consumes
significant CPU and memory resources and should only be executed when
significant changes have occurred to the underlying data that impact current
statistics information and consequently the selection of an optimal access
path by the DB2 optimizer.

This implies that the frequency of runstats execution should be managed.

� The degree of statistical detailed information requested has a direct impact on
the performance of the runstats utility. Specifying the WITH DISTRIBUTION
clause with some or all columns, and/or the DETAILED clause, results in
significant CPU and memory consumption. In particular, the database

 Chapter 4. Command and utility considerations 327

configuration parameter stat_heap_sz should be adjusted to accommodate
the collection of detailed statistics.

Consider using the SAMPLED option of the DETAILED clause to reduce CPU
consumption—this is of particular benefit in BI environments.

4.8.3 Best practices
We recommend the following best practices to achieve superior runstats
performance:

1. In spite of the overhead of collecting detailed statistics, consider specifying
the WITH DISRIBUTION and DETAILED clause on a table, if it is a very critical
table in critical queries, is relatively small, or does not change too much and
there is not too much activity on the system itself.

2. If the time to collect statistics is limited, and the table is relatively large and/or
changes a lot, it might be beneficial to execute runstats and limit it to the set
of columns that are used in predicates. This enables you to run the utility
more frequently.

3. The WITH DISTRIBUTION option should be used when the data is known to
have non-uniform data distribution and the workload is capable of exploiting
non-uniform data distribution statistics.

Keeping distribution statistics is advisable if at least one column in the table
has a highly “non-uniform” distribution of data and the column appears
frequently in equality or range predicates.

4. If there are many indexes on the table and DETAILED (extended) information
on the indexes might improve access plans, consider using the SAMPLED
option to reduce the time it takes to collect statistics.

Regardless of whether the SAMPLED option is used or not, collecting detailed
statistics on indexes is time-consuming. The SAMPLING option, when used with
the DETAILED option, allows runstats to employ a CPU sampling technique
when compiling the extended index statistics. If the option is not specified,
every entry in the index is examined to compute the extended index statistics.

Note: Distribution statistics are most useful for dynamic SQL and static
SQL that does not use host variables. When using SQL with host variables,
the optimizer makes limited use of distribution statistics.

328 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

5. DETAILED index statistics should be collected in the following circumstances:

– The table has multiple unclustered indexes with varying degrees of
clustering.

– The degree of clustering is non-uniform among the key values.
– The values in the index are updated non-uniformly.

6. If there is skew in certain columns and predicates of the type “column_name =
<constant>”, then it may be beneficial to specify a larger NUM_FREQVALUES
value for that column

7. For columns that have range predicates (for example, “column_name >=
<constant>”, or “column_name BETWEEN <constant1> AND <constant2>”), or of
the type “column_name LIKE ‘%xyz’”, then it may be beneficial to specify a
larger NUM_QUANTILES value.

8. If storage space is a concern and you cannot afford too much time on
collecting statistics, do not specify high NUM_FREQVALUES or NUM_QUANTILES
values for columns that are not used in predicates.

9. Collect additional column statistics via the LIKE STATISTICS clause for tables
with string data types that are likely to be the target of SQL applications using
wildcard LIKE predicates, such as “LIKE ‘%xyz’” or “LIKE ‘%xyz’”.

The DB2_LIKE_VARCHAR registry variable affects the way in which the
optimizer deals with a predicate of the form:

column_name LIKE ’%xxxxxx ’

where xxxxxx is any string of characters; that is, any LIKE predicate whose
search value starts with a % character. (It might or might not end with a %
character). These are referred to as “wildcard LIKE predicates”›.

For all predicates, the optimizer has to estimate how many rows match the
predicate. For wildcard LIKE predicates, the optimizer assumes that the
COLUMN being matched contains a series of elements concatenated together,
and it estimates the length of each element based on the length of the string,
excluding leading and trailing % characters.

Note: The SAMPLED DETAILED option requires 2 MB of the statistics heap.
Allocate an additional 488 4K pages to the database configuration
parameter stat_heap_sz setting for this additional memory requirement. If
the heap appears to be too small, RUNSTATS returns an error before
attempting to collect statistics.

Note: The DETAILED statistics PAGE_FETCH_PAIRS and CLUSTERFACTOR will be
collected only if the table is of a sufficient size, around 25 pages.

 Chapter 4. Command and utility considerations 329

330 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Chapter 5. Operating system
considerations

In this chapter we provide an overview of operating system considerations
relevant to achieving superior DB2 performance. We review hardware, operating
system, filesystems, and memory issues relevant to DB2 performance. We also
describe some of the performance monitoring tools available.

The topics covered include:

� AIX platform
� Windows platform

5

© Copyright IBM Corp. 2004. All rights reserved. 331

5.1 Introduction
The objective of this chapter is to familiarize DBAs with operating system
platform performance drivers that can have a critical impact on the performance
of their DB2 environment, so that they may be in a position to negotiate more
effectively with system administrators responsible for these performance drivers.

The platforms discussed are AIX and Windows.

5.2 AIX platform
AIX is the IBM implementation of the UNIX operating system, and is available on
the IBM Power-based and RS64 microprocessor-based systems. It includes a
logical volume manager, and supports dynamic logical partitions1 on
POWER4™-based systems.

We briefly discuss the following key performance drivers:

� Operating system considerations
� Memory considerations
� Disk and filesystem considerations

Best practices and recommendations are provided for each of these performance
drivers, and are classified as being general and DB2-specific. Typical
performance monitoring tools for these performance drivers are also described.

5.2.1 Operating system considerations
In this section, we provide the following:

1. AIX/DB2 review
2. General performance recommendations
3. DB2-specific performance recommendations

Important: In most cases, the DBA has no jurisdiction over monitoring and
tuning these key performance drivers, since they are the responsibility of the
appropriate administrator. This chapter is not meant to be a comprehensive
discourse on monitoring and managing operating system platform
performance drivers; readers are strongly advised to consult other
documentation sources for more detailed information about this subject.

1 The ability to alter the amount of system memory or number of processors.

332 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

AIX/DB2 review
DB2 V8 supports both AIX 4.3.3 and AIX 5 versions.

Systems that use POWER3, POWER4 or RS64 microprocessors are capable of
running both 32-bit and 64-bit operating systems, and applications such as 64-bit
DB2 V8. Each operating system release CD set contains both 32-bit and 64-bit
versions of AIX.

eServer™ pSeries® systems with POWER4 processors can take advantage of
the IBM logical partitioning (LPAR) technology, which provides several
independent system images running on a single hardware platform. LPAR
technology with AIX 5 enables the system administrator to configure varying
number of CPUs, memory size, and I/O adapters for each partition.

AIX 5.2 provides dynamic LPAR (DLPAR), where the number of CPUs and
amount of memory can be varied online without rebooting the operating system.
Support for dynamic re-configuration of I/O adapters between partitions is
expected to be available in a future release of AIX.

LPAR enables the DB2 environment to be reconfigured as workload changes
over time or at specific intervals. For example, during heavy month-end
processing, CPUs normally allocated to the development/test/regression
environment could be temporarily allocated to the production environment.

General recommendations
We recommend the following general best practices:

1. Use AIX 5.2 if possible at the latest maintenance level.

2. Use 64-bit DB2 with the 64-bit AIX kernel.

3. Use the 32-bit kernel if you do not use 64-bit DB2.

4. As a rule of thumb, UNIX systems should be configured with enough
resources (CPU, memory, and so on) so that steady state system utilization is

Attention: There are no significant performance benefits in using either
operating system version when using 32-bit DB2 and standard filesystems.

Note: 64-bit applications can run on the 32-bit operating system version and
vice versa; you can install the 32-bit version of AIX 5 and run 64-bit DB2 V8 on
it, or boot the 64-bit version of AIX and run 32-bit DB2.

There is a small performance benefit in having the operating system and DB2
use the same bit size.

 Chapter 5. Operating system considerations 333

generally 70% or less. This provides spare capacity to cope with unexpected
peak workloads.

5. When the AIX system boots, the number of licensed users is used to size
various operating system data structures, such as the total number of UNIX
processes the system can handle. Running out of these structures can cause
the system to slow down.

The number of licensed users should at least be equal to the expected
maximum number of concurrent connects. Overconfiguring these data
structures is not recommended, since they consume memory that could be
better utilized elsewhere.

This number of licensed users also limits the number of uses who can log in
to the system concurrently using telnet, rlogin and so on (but excluding
Web-connected sessions). The default value is 2, which needs to be changed
after installing AIX.

The following command displays the current value of this variable:

lslicense

You need to be the superuser to run this command.

6. AIX has a default value of 128 for the number of processes per user.

This value needs to be increased to avoid DB2 failures under workloads
involving large numbers of users. This value needs to be greater than the total
of all DB2 processes with the same user id, which is typically the same DB2
instance.

This count should include the total number of listeners, agents and
subagents, prefetchers, page cleaners and so on for each instance—and the
largest of these totals of all instances should be used. Unlike the number of
licensed users variable, no operating system resource costs are dependent
on the value specified for this variable.

The following command displays the current value of this variable:

lsattr -El sys0 | grep maxuproc

7. DB2 uses the kernel’s asynchronous I/O feature whenever it reads or writes
more than one extent in a single request.

The kernel uses “aio” threads to perform this I/O, and the minimum and
maximum numbers of threads needs to be configured.

Note: With AIX 5.2, the number of licensed users can be increased
dynamically without requiring a system reboot, if you use the
“IMMEDIATELY update AVAILABLE FIXED licenses” option.

334 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

If too many are configured, the threads will not be used; if too few are
configured, performance degrades. While there are several rules of thumb for
determining the correct numbers, we recommend the following:

– Set maxAIOservers to the maximum of:

• Minimum of 10 times the number of database disks, or 10 times the
number of CPUs in the system

• At least one per page cleaner and prefetcher (per instance)

– A good value for minAIOservers is maxAIOservers/2.

The following command displays the current settings of these variables:

lsattr -El aio0

DB2-specific recommendations
We recommend the following DB2-specific best practices:

1. DB2 in 64-bit mode enables DB2 to use larger heaps, but the DB2 processes
such as db2agent also use more memory. This additional memory
(approximately 50 KBytes per process) needs to be factored into memory
usage computations. However, in most situations, heap usage outweighs
process memory usage and the overhead of 64-bit process memory usage is
not a consideration.

2. If you run a DB2 32-bit application on a 64-bit database, you will need to
rebind the application and set UNIX environment variables to point to the
32-bit libraries, for example:

LIBPATH=<db2instance home>/sqllib/lib32
export LIBPATH

3. Multiple versions of DB2 ESE can be installed on the same system. With DB2
V8.1 Fixpak 2, multiple fixpaks of the same DB2 version can also coexist on
the same system.

5.2.2 Memory considerations
In this section, we provide the following:

1. A review of the AIX virtual memory architecture

2. General performance recommendations

3. DB2-specific recommendations

AIX virtual memory architecture review
Virtual memory provides a mechanism for the system to assign more memory to
processes than physically exists on the system. It does this by moving (or

 Chapter 5. Operating system considerations 335

paging) temporarily unused parts of memory (pages) to disk, and restoring them
when required.

Figure 5-1 shows a simplified model of AIX memory architecture.

Figure 5-1 Simplified view of 32-bit AIX memory architecture

The main elements are real or physical memory, virtual memory addressable
space, segment registers, page tables and page files.

� All systems have a certain amount of real memory; the maximum varies by
processor model.

� Process virtual memory, on the other hand, is limited by the architecture: for
32-bit processes, the limit is 4 GB, while for 64-bit processes, the limit is
approximately 236GB.

336 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� All processes are associated with a set of segment registers, which is 16 in
32-bit environments, but a practically unlimited number in 64-bit
environments.

Processes use segment-based addresses to access memory segments,
which can be up to 256 MB in size in 32-bit environments. Each segment
consists of a number of pages of the same size; pages are typically 4 KB in
size, but AIX 5 permits the creation of larger page sizes of 16 MB.

� Page tables are used to map virtual memory addresses to physical/real
memory addresses. There is a page table for every process.

� Page files store virtual memory pages that have been paged out.

A brief overview of system view of memory, paging, paging space, and DB2
process segment register use is provided in the following subsection.

System view of memory
The operating system uses virtual memory for processes, as well as to hold data
being read or written to files.

When a process reads from a file, the data is transferred from the filesystem into
operating system buffers and then copied into the process’s memory space. The
operating system may read more data from the disk than the process actually
requested; that is, it may “read ahead” so that a subsequent read by the process
will be satisfied from these buffers instead of from disk. Similarly, when a process
writes to a file, the data is transferred to operating system buffers, and then
scheduled to be written to disk at a later point in time.

The operating system balances the amount of memory available for processes
and buffers. Too much memory for processes will result in poor filesystem
performance, while too much memory for filesystem buffers will result in
processes paging excessively (see “Paging” on page 337), thereby degrading
performance. This is tunable.

For systems with large amounts of filesystem I/O, the amount of memory for
filesystem buffers should be large. For systems using mostly raw disks, reducing
the memory for filesystem buffer pools will provide more memory for processes.

Paging
Whenever possible, the operating system will retain virtual memory pages in real
memory to enable maximum reuse. If there is insufficient real memory to hold the
required pages, the operating system has to perform paging.

Note: For a more extensive discussion of this subject, refer to Chapter 3 in
The POWER4 Processor Introduction and Tuning Guide, SG24-7041.

 Chapter 5. Operating system considerations 337

When a process requests a page of virtual memory that has not been mapped to
a real memory page, the process is said to have incurred a page fault. This
involves a wait by the process until the requested virtual memory page is
mapped to real memory. Page in is the task of making room in real memory to
store currently requested virtual memory pages by stealing real memory space
previously allocated to someone else.

� If the page to be discarded has been changed, it must first be written to disk;
this task is called page out. If the page was part of a process’s data or stack
space, it is written to the page file (see “Paging space” on page 339). If it is
part of a filesystem, it is written back to the filesystem. These I/Os correspond
to paging and filesystem page outs, respectively.

� If the page has not been changed (such as a page that holds the process’s
code), then it is simply discarded because the code page can always be
reread from the executable file itself.

Once real memory space is freed, the operating system reads in the appropriate
page from the page file or filesystem. A read from a filesystem file might bring in
a page of data, or a page of a process’s code.

The algorithm used to discard filesystem and process pages is loosely based on
two operating system variables minperm and maxperm that represent percentages
of memory, as follows:

� If the percentage of real memory occupied by file pages rises above maxperm,
the operating system discards file pages.

� If the percentage of real memory occupied by file pages drops below minperm,
the operating system discards both file and process pages.

� If the percentage of real memory occupied by file pages is between minperm
and maxperm, the operating system discards file pages while the page fault
rate2 for file pages is greater than the page fault rate for process pages.

A number of commands, such as vmtune and nmon (see “Monitoring and problem
determination tools” on page 387), display the current minperm and maxperm

Note: Some virtual memory pages cannot be paged out if they happen to be
“pinned”; such virtual memory pages hold page tables and filesystem buffers
while a disk transfer is in progress.

2 This refers to the rate at which the operating system is transferring pages to and from the paging
space.

Note: Default value for minperm is 20%, while that of maxperm is 80%.

338 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

values. These tools will also display the value of numperm, the current percentage
of memory devoted to file pages.

Paging space
Paging space on disk is required to hold virtual memory paged out by the
operating system. This space is allocated by the UNIX sysadmin. The amount
required will depend on a number of factors, including the following:

� Amount of physical memory on the system
� Number of processes
� Size of any heaps allocated

AIX implements several paging policies.

The default policy (which is recommended) is to only allocate paging space
(pages in the page file) when a virtual memory page must be written to disk
(known as deferred paging).

The lsps -s command shows the utilization as a percentage, as described in
“lsps” on page 369.

Because of deferred paging, it is possible to see a condition in which paging
space usage spikes very suddenly. If memory becomes overcommitted in the
system by even a small amount, then pages begin to get paged out to disk,
thereby consuming new paging space. Once particular pages of memory get
backed by paging space, they continue to do so for the lifetime of the process
which allocated them, even if those pages are later paged back into physical
memory.

Therefore, as more and more memory gets paged out for the first time, paging
space usage continues to climb. In extreme cases, this can happen very rapidly,
leading to most or all memory held by agents on the system consuming space on
the paging volume.

If you run out of paging space, the system will probably stop.

Note: Typically, for the default policy, the amount allocated to a paging file is
between one and two times the amount of physical memory. We recommend
paging space to be twice the amount of physical memory.

Note: When paging space is very low, AIX sends a SIGDANGER signal to all
processes on the system; DB2 has a signal handler for this signal and will log
an entry in the db2diag.log.

 Chapter 5. Operating system considerations 339

Despite the problem of running out of paging space, monitoring the page fault
rate is even more important than monitoring the amount of paging space used,
because high page fault rates correspond to large amounts of I/O and have a
significant adverse performance impact. High page fault rates are typically in the
range of hundreds or thousands of page faults per second, but this is subjective
since it depends upon the number of CPUs in the system, as well as the
application workload.

When DB2 agent processes finish processing a request and are returned to the
agent pool, they do not release their agent private memory. This memory is kept
for fast reuse to improve performance. However, it can result in increased
memory and page space consumption.

This behavior can be changed by setting the DB2 registry variables
DB2MEMDISCLAIM and DB2MEMMAXFREE.

� DB2MEMDISCLAIM = YES means the agent process discards some or all private
memory back to the agent heap.

� DB2MEMMAXFREE determines how much memory each idle agent retains. The
default value for DB2MEMMAXFREE is 8 MB.

The disclaim mechanism is important when the amount of paging space
available is strictly limited.

There are a number of tools which show the page fault rate. In AIX, page faults
also include reads and writes to files in filesystems. Only some tools such as
nmon distinguish these from process page faults, as shown in Figure 5-18 on
page 372.

The ps command with the v option displays the number of page ins for a
particular process, as shown in Figure 5-21 on page 375.

DB2 process segment register use
Processes on IBM pSeries platforms (Power or RS64 processors) access
memory via segment-based addresses. A segment-based address is calculated
using a segment register and a segment offset.

As indicated earlier, a 32-bit environment has 16 registers per process, where
each register can reference a memory segment of up to 256 MB. If 32-bit
programs such as DB2 or other user processes need to access more than 256
MB of data, they can do so by using a contiguous set of segment registers. A
64-bit environment supports an effectively unlimited number of segment

Attention: The page fault rate should ideally be zero, but 10 or 20 page ins or
page outs per second per CPU may be acceptable.

340 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

registers. However, the method of determining addresses is identical in both
environments.

Some segment registers are reserved for use by AIX or for DB2 internal
operations, while others can be used for several purposes.

Figure 5-2 shows the DB2 processes defaults for segment registers in the 32-bit
environment. The maximum addressable space in a 32-bit environment by a
process is 15 x 256 MB or approximately 3.75 GB, since segment register (0) is
reserved for mapping kernel space.

Figure 5-2 32-bit environment Segment Register usage

DB2 processes allocate virtual memory dynamically for private agent memory or
DB2 shared memory. These are addressed through various segment registers
as shown in Figure 5-2. Some of this memory may be shared with other DB2

Note: By default, segment 2 holds process data. This includes any constants,
non-stack, and stack variables. Constants and non-stack variables are
allocated from the bottom of the segment 2 upwards, while stack space is
allocated from the top of the segment 2 downwards.

 Chapter 5. Operating system considerations 341

processes, in which case each process’s registers simply point to a common
area of memory.

For 32-bit processes, some of the assignment of segment registers is as follows:

� Segment register 2 holds all of the DB2 private memory for an agent. This
private memory includes all private data used for SQL processing, such as
private sorts, local data for processing of SQL statements, and heaps which
reside in agent private memory, as shown in Figure 2-7 on page 32.

As described earlier, the process stack in this segment grows downwards
from the upper bound address, while non-stack memory is allocated from the
bottom upwards. These may collide if instance memory configuration
parameters are overconfigured, resulting in unpredictable process failures.

� Segment register 3 is used to attach to the instance shared segment.

� Segment registers 4 through 11 are assigned contiguously to attach DB2
shared memory as needed. This includes buffer pools, database heap, utility
heap, package cache, locklist, and sort heap threshold.

The following are some of the main segments that will be needed for the
following configuration parameters (this is not a comprehensive list):

– Segment register 8 is used for FCM communications with Distributed
Partitioning Feature (DPF) if the DB2_FORCE_FCM_BP registry variable is set
to YES.

– Segment register 9 is used for agent to UDF communication.

– Segment register 10 is used for the application global memory
(appl_ctl_heap_sz) if the INTRA_PARALLEL or connection concentrator or
DPF is enabled.

– Segment register 11 for application/agent communication heap
(aslheapsz).

� Segment register 12 is used to attach to the shared segment used for DB2
trace.

342 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Extended Storage (database configuration parameters estore_seg_sz and
num_estore_segs) is a DB2 feature whereby a large (typically >4 GB) area of
shared memory can be used as an extended buffer pool. When extended storage
is enabled, a number of shared memory segments will be created at the AIX
level, but only one of these will be attached by a DB2 agent at a particular time.
When a buffer pool page needs to be referenced in a different segment, then the
current segment is detached and the required segment attached at runtime.
There is an adverse performance impact with this approach, since page table
entries need to be flushed and recreated when the segment registers are
changed.

When DB2 processes start, they allocate shared memory segments. If they are
already allocated, processes attach to the existing segments. The owners and
sizes (SEGSZ in bytes) of shared memory segments can be displayed using the
following command, as shown in Figure 5-3 on page 344:

ipcs -mb

Important: Problems typically occur when there is a conflict between
segments needed for different purposes, since there are only a finite number
of segments that can be attached and they must all fit within the configuration.

For example, if DB2 shared memory allocated is so large (7 x 256 MB) as to
attach segments 4 through 10, and INTRA_PARALLEL is turned on, then a
connect will fail with a SQL0987 return code because the application control
heap (appl_ctl_heap_sz) must be attached at segment 10, which is already
taken by the DB2 shared memory.

Therefore, while Figure 5-2 on page 341 implies that up to 7 segment
registers are available for DB2 shared memory, configuration or use of other
features such as INTRA_PARALLEL and others can reduce this number to 5.

By understanding which segments will be required based on the configuration,
you should be able to understand and resolve most or all of these problems.

Refer to the IDUG 2001 presentation “Where Did My Memory Go? - Memory
Usage in UDB” by Ian Maione for further details.

Tip: Use 64-bit DB2 to access large amounts of physical memory for heaps.

 Chapter 5. Operating system considerations 343

Figure 5-3 Output of ipcs -mb command

When DB2 shuts down, it normally releases these segments and they disappear.
If a problem occurs while shutting down, segments can be left around, and these
can be identified since the OWNER of these segments corresponds to the DB2
instance owner. A restart of DB2 normally fails in such cases; errors are recorded
in <instance>/sqllib/logs/db2start.<timestamp>.errlog and
<instance>/sqllib/db2dump/db2diag.log.

These segments may removed by using the ipcrm command after ensuring, via
the ps -ef | grep db2 command, that there are no DB2 processes running.

DB2 uses other shared resources, such as semaphores and message queues.
These can also be viewed using the ipcs command with -s or -q options. They
should also normally be released when DB2 shuts down.

DB2 also provides the ipclean command. This command has a number of
options for cleaning up shared memory, semaphores, and message queues. You
can view the command options by using the following command:

ipclean -?

344 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

General recommendations
We recommend the following general best practices:

1. Use vmtune to balance process and file memory using minperm and maxperm;
the defaults are 20% and 80%, respectively. Monitor paging rates using a tool
such as nmon, as shown in Figure 5-4.

Figure 5-4 nmon memory statistics

– If your system mostly uses raw disk containers, try setting minperm and
maxperm to 10% and 20%, respectively, as follows:

/usr/samples/kernel/vmtune -p 10 -P 20

– If your system mostly uses system-managed or database-managed file
containers, try setting minperm and maxperm to 15% and 50%, respectively,
and monitor page fault rates as described here:

• If process paging rates are less than 5 to 10 page ins or page outs per
second for extended periods, reduce the values of minperm and
maxperm and repeat the monitoring process.

• If the filesystem paging rates are “high” (this depends on the number of
filesystems), then increase the values of minperm and maxperm and
repeat the monitoring process.

DB2-specific recommendations
We recommend the following DB2-specific best practices:

1. If your system never or rarely pages and you have lots of memory and paging
space, set DB2MEMDISCLAIM=NO. Otherwise, set DB2MEMDISCLAIM=YES and set
DB2MEMMAXFREE=8000000. DB2 registry variables are set via the db2set
command.

2. Setting the DB2 registry variable DB2_PINNED_BP = YES (default is NO) causes
all database global memory to be pinned; it will not be paged out. This
provides more consistent response time performance, but can impact other
processes that will bear the brunt of paging instead. It may also adversely
affect filesystem performance.

 Chapter 5. Operating system considerations 345

Since most DB2 servers have a large amount of main memory that cannot be
fully used by DB2, consider setting DB2_PINNED_BP = YES to take advantage
of this unused memory and to improve the overall performance of your
database environment.

3. Similarly, if the system uses SMS or DMS file containers, set
DB2_MMAP_READ=OFF and DB2_MMAP_WRITE=OFF (the default is ON for both
variables) so as to not use memory mapped files. This frees up one segment
register and takes advantage of the filesystem buffers.

Refer to IBM DB2 Universal Database Administration Guide: Performance V8,
Appendix A, “Registry and Environment Variables” for default values and valid
settings.

5.2.3 Disk and filesystem considerations
In this section, we provide the following:

1. Disk subsystem review

2. Disk subsystem recommendations

3. Filesystem recommendations

4. DB2-specific recommendations

Disk subsystem review
Disk subsystems tend to have the most significant performance impact on
applications by virtue of their electromechanical nature; in the time it takes to
move heads across disks, CPUs can execute millions of instructions.

A good disk subsystem design not only involves selecting the right number, size
and performance characteristics for the disks, but also the topology used in
connecting these disks via disk adapters and adapter buses.

In a balanced system, each bus such as a SCSI or Fibre bus will support the
bandwidth and I/Os per second capabilities of the disks on that bus. In addition,
the PCI bus that the disk adapters are connected to should be able to support the
bandwidth requirements of those adapters and whatever else is in the PCI slots
and so on. Figure 5-5 on page 347 illustrates a simplified view of a disk
subsystem architecture and potential bottleneck areas.

Note: Memory mapped files are a UNIX technique whereby programs can
“map” files or parts of files into memory and then address those parts as
though they were simply program data instead of having to read and write the
data file each time it is accessed. If a system has plenty of memory, this offers
some performance and programming advantages.

346 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 5-5 Simplified view of disk subsystem architecture

In most cases, disk subsystem design is done with little or no DBA involvement.
However, it is important for DBAs to understand potential areas of bottlenecks in
the disk subsystem in order to be able to identify and resolve performance
problems relating to the disk subsystem.

The economics of disk technology are driving configurations towards fewer and
larger disks. However, there are performance benefits in using more, smaller
disks. These equations must be solved for each particular system.

Refer to IBM DB2 UDB DB2 V8 Administration Guide: Performance, SC09-4821,
Chapter 2 for details on how DB2 lays out control information and database
objects such as tables across disks when creating a database.

The next subsections provide a brief overview of the following:

Note: Chapter 9 of the IBM Redbook Database Performance Tuning on AIX,
SG24-5511, provides an extensive discussion of the design of disk
subsystems for database environments.

 PCI Bus PCI Bus

 CPUS

 Memory

 Disk
Adapter

Disk
Adapter

Potential
Bottlenecks

 Disk
Adapter

 Disk
Adapter

 Chapter 5. Operating system considerations 347

� Disk technology fundamentals
� RAID
� SAN storage
� AIX Logical Volume Manager
� Mirroring and striping data
� Striping data and prefetch
� 64-bit filesystem performance

Disk technology fundamentals
Disk performance is characterized by speed (revolutions per minute(rpm)), head
access times (milliseconds), and data transfer rates (MB or GB per second).

� Current disks support high speed rpm (7200, 10000, and 15000 rpms), which
are significantly higher than first generation 3600 rpm disks. Higher speeds
give better performance because the linear speed of the head over the track
results in higher transfer rates.

� Head access time refers to the time it takes to move the disk’s read/write head
from one track to another. The conventional measurement (seek time) is the
number of milliseconds needed to move the head across half the tracks on a
disk platter. The smaller the head access time, the better performance is
delivered.

The length of a disk track3 increases from the center of a disk platter to the outer
edge. Early technology disks had the same number of sectors on the inner tracks
and outer tracks, thus limiting the amount of information recorded to the capacity
of the innermost track; this resulted in underutilization of the capacity of the outer
tracks. Modern disks use a concept called “zone recording” where inner zones
have fewer sectors per track, and outer zones have a larger number, thereby
significantly increasing the amount of data that can be stored on a disk. There
are typically three or more zones on a disk.

A consequence of zone recording is that you can transfer more data to or from an
outer zone track without moving the disk heads, compared to an inner zone track.
For the highest possible performance, place performance critical data on the
outer edges of the disk, and use the rest of the disk for infrequently accessed
data.

However, when you need to place a number of files or filesystems on a single
spindle, place the most frequently accessed one in the central zones. This gives
the highest probability that the disk heads will be over, or moving towards, your
frequently accessed data.

3 This, effectively, is the circumference of a circle.

348 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

RAID
Redundant Array of Independent Disk, or RAID, technology implements virtual
disks from a number of physical disks. RAID combines multiple physical disks
into a single virtual disk that provides data protection and increased
performance. RAID can be implemented in software such as in Logical Volume
Manager, or in hardware such as various disk adapters, IBM ESS, and FAStT
storage systems.

We recommend that where RAID is provided by hardware, it should normally be
used in preference to the software solution (such as Logical Volume Manager).

Table 5-1 on page 351 provides a brief overview of the various types of RAID and
their characteristics.

RAID 0

RAID 0, or striping, does not provide data redundancy in a disk subsystem; the
primary goal of RAID 0 is to improve I/O performance. When data is written on a
striped logical disk (or LUN), the data is divided into small pieces known as
chunks or stripe units. These units are then written to the disks in parallel, in a
round-robin fashion. During a read operation, the same units are read back in
parallel.

Performance is related to the stripe size and number of disks in the array.
Typically, performance will be better with larger numbers of disks and in
multi-user environments.

The main problem with RAID 0 is obviously that any disk failure in the array will
render the data on the remaining disks unusable. For that reason, only consider
RAID 0 if you require good performance but are not concerned about availability.

RAID 1

RAID 1, or mirroring, simply means keeping a copy of the data on one or more
additional disks to protect against data loss in the event of a single disk failure. To
improve availability, the copies should be kept on separate physical disks, which
ideally should be attached to separate I/O adapters.

To maximize availability, the disks should be in separate disk cabinets to protect
against events such as a power loss to one of the disk cabinets.

Note: The placement rules do not apply if you are using virtual or logical disks,
for example, in a SAN.

 Chapter 5. Operating system considerations 349

In the event of a disk failure, read and write operations will be directed to the
mirrored copy of the data. In performance terms, mirroring has some advantages
over striping. If a read request is received and the primary data copy is busy, then
the read is directed to the mirrored copy. However, write performance is
penalized because each copy requires a separate write.

RAID 5

In a RAID 5 array, data and parity are spread across all disks. For example, in a
5+P RAID 5 array, six disks are used for both parity and data. In this example,
five-sixths of the available space is used for data and one-sixth is used for parity.

Because of the parity data used by RAID 5, each write to the array will result in
four I/O operations; this is known as the RAID 5 write penalty:

1. Read old data
2. Read old parity
3. Write new data
4. Write new parity

If the database activity is very write-intensive, then the write penalty will become
a factor. However, hardware caches, which exist on ESS and FAStT disk
subsystems as well as some RAID adapters, can reduce the effects of this
penalty. As well as simply caching I/O requests, it will frequently be possible to
calculate new parity because data and parity blocks remain in the cache,
therefore avoiding the need to read from the disks.

RAID 5 is commonly chosen because it provides an extremely good
price/performance ratio combined with good availability.

RAID 10

Sometimes called RAID 0+1, this RAID level provides better data availability at
the cost of extra disks. Consider a striped logical volume, where failure of one
disk renders the entire logical volume unusable. RAID 10 provides the ability to
mirror the striped logical volumes to prevent this. When data is written to the
disks, the first data stripe is data and the subsequent stripe copies (maximum of

Notes:

� AIX mirroring provides several scheduling policies for mirroring. These
have different performance and data integrity characteristics. Consult the
LVM documentation for additional information.

� In AIX, when using LVM to implement mirroring data, only the logical
volumes are mirrored, not the physical disk. Mirroring is not a tool to use to
provide a disk copy.

350 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

three copies, including first copy) are the mirrors and are written to different
physical volumes.

Table 5-1 A summary of RAID types

Recommendations about using RAID in conjunction with DB2 are discussed in
“DB2-specific recommendations” on page 345.

SAN storage
Storage Area Networks, or SAN, are increasingly being used to store large
databases. AIX eServer pSeries systems support a variety of IBM and OEM
devices. They are normally connected by multiple fiber optic cables; however, the
high throughput of fiber (2 Gigabits per second) does not always translate into
disk throughput.

Potential issues include:

� Some devices and device drivers do not support multi-path I/O (load
balancing of I/Os) across multiple disk adapters. Therefore, all I/O to the
logical disk is via a single fiber despite multiple physical connections.

RAID type Method and benefit

RAID 0 � Data is written in stripes over ‘N’ disks.
� No redundancy or data parity.
� Requires one physical I/O per logical I/O (or more,

depending on transfer size and stripe size.
� Provides performance improvement for multi-user

access.

RAID 1 � Same data written to two or more (“M”) disks for data
protection (more often known as mirroring).

� Requires “M” physical I/Os.

RAID 5 � Data written in stripes over “N” disks with parity written
to (N+1)th stripe.

� Parity stripe moves sequentially from disk to disk.
� Requires 4 physical I/Os.

RAID 10 � Effectively RAID 0 + RAID 1; that is, provides data
protection and performance.

� Assuming 2-way mirror, requires 2 phys. I/Os.

Tip: The Fibre Channel Industry Association preferred spelling is “fibre
channel” when referring to standards or fibre channel products, and “fiber”
when referring to fibre optics in general.

 Chapter 5. Operating system considerations 351

� Although the fiber can support 2 Gb per second, the SAN device may be
limited in the number of individual I/Os per second it can support. This may be
a significant concern when the I/Os are small.

Recommendations about using SAN in conjunction with DB2 are discussed in
“DB2-specific recommendations” on page 345.

A number of tools are available to monitor disk subsystem performance:

� Consider using iostat and nmon for an instantaneous view of the LUNs, not
the physical disks. These tools may also be used to record data by redirecting
iostat to a file. sar and filemon can also record data in a file. “Monitoring
and problem determination tools” on page 363 describes some of these tools.

� Tools provided by the SAN storage subsystem provide a performance
perspective from the storage device end that can be compared with operating
system performance data.

Enterprise Storage Server (ESS)
The IBM Enterprise Storage Server® (ESS) is a SAN-connected disk storage
subsystem capable of holding terabytes of data. It can support multiple
connections, each with multipath I/O in conjunction with AIX (and Windows)
operating systems. AIX provides concurrent access to an ESS logical disk via
each path of a multipath connection.

The ESS has a large cache that logically sits between the operating system and
ESS disks. This cache buffers both disk reads and writes.

Disks in the ESS are organized in “ranks” of, typically, seven disks forming a
“6+P” RAID5 array. The latest ESS model also implements a RAID10 array which
may offer superior performance in heavy update-oriented environments. Ranks
are split up into “logical units” or LUNs. LUNs correspond to logical disks at the
operating system level.

It is possible to treat the ESS as a black box that simply provides a number of
fixed sized logical disks for use by DB2. While this approach may also provide
simple administration, for optimal performance it is necessary to understand how
LUNs are mapped to ranks and the access paths to those ranks.

Note: For optimal performance, the DBA needs to influence how logical disks
(LUNS) are ultimately mapped to physical disks in the SAN. The trend,
however, is towards a quality of service (QoS)-driven approach to logical
volume allocation, and the DBA’s ability to directly control device
configurations is diminishing.

352 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The StorWatch Specialist for ESS provides a graphical PC-based tool to view
and administer the ESS. This is normally only available to the ESS administrator.

ESS and SMS considerations
LUNs can be used as SMS or DMS containers. For an SMS or DMS FILE
container, you will need a logical volume (to contain the filesystem) created on
the LUN by LVM (see “AIX Logical Volume Manager” on page 355). Do not
create LVM volumes as RAID, because this would place RAID on top of RAID,
which will have poor performance characteristics.

To minimize filesystem lock contention on update-oriented SMS containers,
create several SMS containers per rank. For an explanation of lock contention,
see “64-bit filesystem performance” on page 357. However, if you are using
tablespace striping, to maximize performance, ensure that the tablespace’s
containers are not in the same rank. This applies for both SMS and DMS
containers.

ESS and DMS considerations
If you use AIX LVM to create logical volumes for DMS FILE or DEVICE
containers, the Logical Volume Manager will allow you to create the volume
across multiple hdisks (or LUNs, in the ESS case). While you would normally do
this in a non-RAID environment, it is not appropriate in this case because the
underlying LUNs are already RAIDed and there is no performance advantage
over using only one LUN per volume.

Take advantage of the inherent striping capabilities of DB2 by placing containers
on separate LUNs on separate ranks wherever possible. This will balance the I/O
load.

If you use DMS DEVICE containers, you do not need to use LVM to create logical
volumes for them. You can use raw hdisk or vpath objects directly. For example,
the corresponding container statement for a multipath device would look like the
following:

DEVICE ‘/dev/rvpath17’ 102400

ESS and DB2 configuration
DB2 stripes across containers at the tablespace level, and the stripe width is the
extent size. ESS LUNs are striped with a stripe width of 32 KB. Selecting
container extent sizes that are multiples of 32 KB will ensure multiple disks in
each LUN are accessed when a prefetch occurs.

A reasonable starting point is to choose an extent size equal to the number of
physical disks in the LUN; for example, for a 6+P rank, set extent size = 6*32 KB

 Chapter 5. Operating system considerations 353

or 196 KB. Alternatively, you may set extent size to 32 KB and prefetch to 196
KB—this is better for OLTP environments.

FAStT disk subsystems
The IBM FAStT disk subsystem is also a SAN-connected disk storage
subsystem, but with significant differences compared to the ESS.

There are several models of FAStT subsystem. The common features include
internal dual redundant loops of disks and two or more fiber connections to a
host system. FAStT provides RAID 0, 1, 3, 5 and 10, and LUNs can be converted
between RAID types transparently to the host given sufficient spare disk capacity
in the FAStT. Striped RAID uses a default stripe width of 64 KBytes, but values
from 8 KBytes to 256 KBytes can be used. There is a limited ability to change the
stripe size transparently to the host.

The base model, FAStT 200, uses a pair of 1 GBit/second fiber connections,
while other models use 2 GBit/second connections. FAStT subsystems support
dual paths from AIX; however, I/O is not concurrent. Rather, a round robin policy
provides load balancing across the two fibers. Therefore, I/O rates and
bandwidth may be significantly lower than an ESS. This will depend on the fiber
speed, patterns of I/Os, and number of disks in the subsystem.

The subsystem presents logical units to the operating system in a similar manner
to the ESS.

There is no concept of “ranks” in a FAStT. Internally, all disks are dual attached to
a pair of loops and can be accessed from either loop. RAIDed LUNs are normally
created by constructing them from N disks, with half accessed via loop A and the
remainder accessed via loop B.

A graphical PC-based tool called FAStT Storage Manager is used to view and
manage the FAStT subsystem.

FAStT and SMS containers
The factors mentioned in “ESS and SMS considerations” on page 353 also apply
to FAStT. Specifically, to minimize filesystem lock contention, use multiple
filesystems for SMS containers if possible.

Attention: Large extents can result in inefficient space utilization. For
example, MDC dimension columns use one extent for each unique value.
Consequently, a poor choice of dimensions can consume large amounts of
storage.

354 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

FAStT and DMS containers
There appears to be little benefit in creating multiple DMS device containers per
tablespace within a FAStT subsystem, as the containers will share a common
access path to and within the FAStT. However, some FAStT models are
configurable with a pair of dual attached disk loops. In this case, a container on
each loop may provide improved performance.

FAStT and DB2 configuration
The same factors mentioned in “ESS and DB2 configuration” on page 353 apply.

AIX Logical Volume Manager
AIX includes a sophisticated Logical Volume Manager (LVM) which implements
logical volumes on physical disks. These logical volumes can be used for
filesystems or as raw devices. The LVM can also mirror or stripe logical volumes
using software.

Refer to the following Redbooks for detailed information about LVM:

� AIX Logical Volume Manager, From A to Z: Introduction and Concepts,
SG24-5432

� AIX Logical Volume Manager from A to Z: Troubleshooting and Commands,
SG24-5433

Mirroring and striping data
Mirroring protects against data loss due to simple disk media or access errors,
while disk striping is typically used to increase disk bandwidth or throughput
beyond that of a single disk.

Mirroring and/or striping may be implemented by DB2, by the LVM, or by the disk
storage subsystem. The choice of a particular approach depends upon the
performance and data integrity requirements of the database, and on familiarity
and ease of management, as follows:

� When mirroring is implemented by the LVM, the operating system must
perform two or more4 physical I/Os for each logical write I/O.

� A DB2 tablespace associated with multiple containers implements striping by
default in DB2 V8. DB2 implements striping at the container level, and the
stripe width is the extent size. You can add containers to a tablespace to

Note: Many storage systems (SAN or SSA) also implement mirroring and/or
striping. This may be in the device adapter or in the storage subsystem, such
as IBM ESS.

4 This depends upon the number of mirrors.

 Chapter 5. Operating system considerations 355

increase the size of the tablespace. The stripe width remains constant, but the
number of strips increases.

Alternatively, the LVM may be used to provide a striped logical volume. LVM
stripes data within a single logical volume constructed from a number of
physical volumes. The stripe width is specified when the volume is created
and cannot be altered. Nor can you add physical volumes to the logical
volume.

Table 5-2 describes some of the considerations in choosing between the
technologies available.

Table 5-2 Mirroring/Striping decision matrix

Striping data and prefetch issues
Both DB2 and AIX filesystems will prefetch data if they detect sequential I/O. It is
critical for performance that DB2 prefetch processes interact efficiently with any
data striping regardless of whether it is implemented using containers, LVM, or
SAN.

Note: It is permissible to combine DB2 and LVM striping for a given
tablespace, in which case the tablespace extent size must be an integer
multiple of the logical volume stripe size, and all volumes must use the
same stripe size.

Function or subsystem Mirror? Stripe?

Disk adapter or SAN � Typically implemented
by adapter or SAN
device.

� Use to protect data in
place of other
technology.

� Typically implemented
by adapter or SAN
device.

� Can provide data
protection in place of
mirroring. If so, use
instead of mirroring.

Logical Volume Manager � Use to protect data if
no adapter/SAN
mirroring available.

� Can be beneficial for
DB2 performance.

� Do not use if
adapter/SAN
implements striping
instead.

DB2 � Mirroring log files may
improve performance.

� Use multiple containers
per tablespace for
maximum performance.

356 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

As mentioned earlier, DB2 automatically implements striping at the tablespace
level when a tablespace is created with multiple containers, or when an existing
tablespace is altered to add containers5.

If the containers are SMS or DMS file containers, the operating system will
prefetch data if it detects sequential reads. Prefetch is driven by two AIX
parameters: minpgahead (default 2 pages) and maxpgahead (default 8 pages). The
operating system will read ahead minpgahead pages and, on detecting continued
sequential access, will double the number of pages read ahead on each read
until it reachs maxpgahead.

Recommendations about using striping and prefetch in conjunction with DB2 are
discussed in “DB2-specific recommendations” on page 345.

64-bit filesystem performance
There are some filesystem performance benefits that flow from using 64-bit AIX,
since AIX5.1 and later support a new filesystem type, JFS2, exclusively on the
64-bit operating system.

SMS and DMS file containers on JFS2 filesystems offer performance benefits
over the more common JFS filesystems.

Enhancements implemented in AIX5.2 ML1 provide further performance benefits
for SMS and DMS containers defined as files. A feature called “Concurrent I/O”
allows multiple processes such as DB2 page cleaners to write to the same file
(container) without holding an exclusive lock on the file. This typically increases
database performance to the level of raw devices, while maintaining the
manageability of files and filesystems. Concurrent I/O can be implemented
simply by mounting the filesystems containing containers with the -o cio option.
When it is not practical to mount the whole filesystem in this mode, a
subdirectory of the mount point can be over-mounted with these options.

5 Altering a tablespace to add containers may invoke a background rebalancing process which
adversely affects performance. Use the BEGIN NEW STRIPE SET option in the ALTER
TABLESPACE statement to allocate a new container above the high water mark, such that a
rebalance will not occur.

Note: The operating system will not prefetch data if containers are raw
devices or raw logical volumes. However, DB2 can prefetch from raw devices
or volumes.

Note: These AIX parameters are common to all filesystems, and its impact on
non-DB2 filesystems must be evaluated.

 Chapter 5. Operating system considerations 357

General file system performance
When the operating system needs to read a logical volume, it allocates a buffer
called a pbuf. If none are available, the read is delayed until one is available. A
similar situation arises when reading from a filesystem; these buffers are called
fsbufs. Default values of pbufs and fsbufs are normally adequate; however, AIX
5.2 provides a tool, vmstat, to monitor these buffers. Do not over-configure pbufs
or fsbufs, because they are pinned in memory and cannot be paged.

Disk subsystem recommendations
We recommend the following disk subsystem best practices:

1. Try to spread the I/O load across as many disks and adapters as possible.
Balance this load as much as possible across disks and adapters.

2. Place data that has high bandwidth requirements or high I/O requirements on
a separate disk and, if possible, a separate I/O bus.

3. Monitor disk subsystem performance with iostat or nmon.

4. Place files or data with high access performance requirements on the outer
edges of disks. If this is not practical, place them in the middle between the
inner and outer tracks.

5. Monitor disk utilization using iostat to make sure it is normally less than 75%
per physical disk. If it exceeds 75%, use filemon to identify the busy volumes
or files. If disk utilization is high but individual volumes on the disk are not
busy, consider the possibility that two logical volumes on the disk may be “far
apart” and the disk is busy because the heads are frequently moving
backwards and forwards between the volumes. While some authors
recommend a ceiling of 40% rather than 75% disk utilization, the important
factor is to make sure utilization is as balanced as possible across all disks.

6. To protect your data, use SAN or LVM mirroring techniques. Assuming the
SAN storage implements some sort of RAID, use the SAN if you have one;
otherwise, use LVM volume mirroring.

7. If you have a large number of DMS containers on raw LVM logical volumes,
consider increasing lvm_bufcnt, a variable that defines the number of buffers
available for raw I/Os. The buffers size is 128 KB and the default value is 9.

You will typically only need to increase this value if you are doing very large
I/Os and have many very fast disks. There is no direct way to monitor this
variable.

If running AIX 5.2, use the ioo command; otherwise, use vmtune.

Attention: This feature is expected to become available in DB2 V8.1 FP4.

358 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

8. If you are using a SAN, determine the mapping of logical to physical disks.
Verify that the different disks are actually physically separate, on separate
buses within the SAN device, and so on. If you still have disk performance
problems, record disk performance data using one of the available tools and
coordinate these measurements with the SAN administrator’s measurements
for the same period. Comparing these should highlight any unexpected
configuration problems.

Filesystem recommendations
We recommend the following filesystem best practices:

1. The default filesystem type limits files to a maximum of approximately 2 GB.
We recommend creating filesystems as “large file enabled”, because this will
permit individual containers to exceed 2 GB.

Figure 5-6 lsfs command output

A large file enabled filesystem is shown by bf: true in the output.

2. The system default ulimit settings prevent users creating files larger than
2 GB. Check ulimit settings with the command ulimit -a as shown in
Figure 5-7.

Figure 5-7 Default ulimit settings

Note: You cannot convert an ordinary filesystem to large file enabled.
However, you can verify whether a filesystem is large file enabled by using
the lsfs command, as shown in Figure 5-6.

 Chapter 5. Operating system considerations 359

The value needs to be altered for all DB2 instance, admin and fenced user
logins. The value should be set to -1, that is, allowing DB2 to create files of
unlimited size as shown in Figure 5-8.

Figure 5-8 ulimit values for db2 processes

3. If you are using SMS or DMS file containers, ensure that JFS logs are not on
the same disks as the corresponding filesystems. Each time a filesystem is
modified, an entry is written to the JFS log. If the filesystem and JFS log are
on separate disks, this will avoid disk head movement.

4. Monitor the system to ensure that there are enough operating system buffers
for disk I/Os and that the operating system is not stalling, waiting for buffers to
become free. The monitoring method used depends on the operating system
version installed, but in each case, ensure that the count of “blocked” buffers
(each of which corresponds to a brief stall by the operating system) is not
increasing. Table 5-3 lists and describes some of the more relevant operating
system variables.

Table 5-3 Operating system I/O variables

Variable Description

hd_pendkblked A count of the number of times the
operating system was not able to acquire
a buffer for physical disk I/O.

hd_pbuf_cnt A variable defining the maximum number
of operating system buffers available for
disk I/O at any one time.

fsbufwaitr_cnt A counter of the number of times the
operating system was not able to acquire
a buffer for filesystem I/O.

numfsbufs A variable defining the maximum number
of operating system buffers available for
filesystem I/O at any one time.

360 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Use the following commands:

– With AIX 4.3.3 or AIX 5.1, run the command vmtune -a as shown in
Figure 5-9 from time to time and check that the variable hd_pendkblked is
not increasing. If it is, then hd_pbuf_cnt needs to be increased.

Also check that the variable fsbufwait_cnt is not increasing. If it is, then
numfsbufs needs to be increased.

Figure 5-9 vmtune -a output (AIX 4.3.3)

– With AIX 5.2, run the command vmstat -v as shown in Figure 5-10 from
time to time and check that the count of “pending disk I/Os blocked with no
pbuf” is not increasing> If it is, then hd_pbuf_cnt needs to be increased.

Also check that “filesystem I/Os blocked with no fsbuf” is not increasing. If
it is, then numfsbufs needs to be increased.

Figure 5-10 vmstat -v output (AIX 5.2)

 Chapter 5. Operating system considerations 361

DB2-specific recommendations
We recommend the following DB2-specific best practices:

1. Place the catalog tablespace (SYSCATSPACE) and the DB2 logs on separate
disks. After creating a database, create new system temporary tablespaces
on separate disks and drop the default system temporary tablespaces.

2. Tablespaces constructed from multiple containers that are striped logical
volumes or striped raw devices (such as a SAN device) should have the DB2
registry variable DB2_PARALLEL_IO defined for them. The degree of parallelism
is determined by the extent size and prefetch size values for the tablespace.
The ratio (prefetch size/extent size) should be at least as large as the number
of disks in the stripe.

3. With DB2 V8 FP4, consider using filesystems mounted with the “Concurrent
I/O” option for SMS and DMS file containers.

4. The CREATE TABLESPACE statement allows you to specify the OVERHEAD and
TRANSFERRATE of the disks in your system. This is used to determine the cost
of I/O during query optimization.

The default values 24 and 0.9 do not correspond to current disk technology.

For 10 K RPM disks use OVERHEAD=8, and for 15 K disks use OVERHEAD=6.
TRANSFERRATE depends on the size of the page. For example, with a 4 KB
page on UltraSCSI3 or SAN disks, use TRANSFERRATE=0.1.

If the tablespace is spread across a number of disks with different
performance characteristics, choose an average of all the values. The UNIX
sysadmin should be able to provide disk performance data.

5. If you are using SMS or DMS file containers on striped LVM volumes,
consider increasing maxpgahead to (16 * the number of disks in the volume).
This can increase performance by reading multiple disks in parallel. You
should also ensure that the vmtune parameter maxfree is at least as large as
maxpgahead.

Note: The system needs to be rebooted for the change to hd_pbuf_cnt to
take effect, while the filesystem will need to be unmounted and remounted
before the change to numfsbufs takes effect.

Attention: The default disk performance numbers in the CREATE
TABLESPACE statement should not be used. Use values obtained from the
disk manufacturer of the actual disks.

362 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

6. If you are using striped DMS tablespaces (multiple containers) on ESS,
ensure the extent size is a multiple of the rank’s stripe width (normally
32 KBytes).

7. I/O servers are used by database agents for prefetch I/O or asynchronous I/O
by utilities (for example, backup or restore). Having more than required does
not impose a large load on the system. Configure NUM_IOSERVERS equal to the
number of physical disks used by the database.

8. Asynchronous page cleaners flush dirty pages from the buffer pools to
maintain a certain amount of free spaces. The number of page cleaners can
have a significant impact on performance. Increase the number of page
cleaners (NUM_IOCLEANERS) if the database is heavily update-oriented or has a
large number of buffer pool pages. This is typically set to the number of CPUs
on the server.

For additional information about RAID and IBM ESS exploitation with DB2, refer
to the IBM Redbooks Database Performance on AIX, SG24-5511, and IBM ESS
and IBM DB2 UDB Working Together, SG24-6262.

5.2.4 Monitoring and problem determination tools
This section provides a brief description of UNIX commands available for
monitoring and tuning the performance of the operating system.

Table 5-4 lists tools that are commonly used to monitor various resources of
interest (this is not a comprehensive list).

Table 5-4 Suggested tool usage

This section covers the following topics:

� Mapping filesystems to physical disks

Note: In most cases, these commands require root or other privileges only
held by the UNIX sysadmin, and not by the DBA. Therefore, the DBA will most
likely have to coordinate with the UNIX syadmin to monitor the system
resources of interest.

Performance problem Suggested tools

High CPU utilization vmstat, sar, nmon,

Not enough memory vmstat, vmtune, nmon, svmon

Paging and/or swapping vmstat, vmtune, nmon, lsps, Memory Visualizer

Disk or filesystem iostat, sar, nmon, filemon

 Chapter 5. Operating system considerations 363

� filemon
� iostat
� lsps
� nmon
� ps
� System activity recorder (sar)
� svmon
� vmstat
� vmtune

A brief overview of each tool is provided, along with sample output.

Mapping filesystems to physical disks
To determine disk utilization and placement relating to specific DB2 objects, it is
necessary to map filesystems to the physical disks on which they reside.

Figure 5-11 shows a sample filesystem6 associated with a logical volume.

Figure 5-11 Relationship between filesystems and disks

This subsection provides a brief overview of the steps involved in determining the
relationship using a number of UNIX commands, as follows:

6 Adding a filesystem writes essential data structures in the target volume, and it becomes usable
after this filesystem is mounted

filesysystem

 hdisk hdisk

pdisk pdisk

df

device specific commands

lslv -l

Logical Volume

364 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

1. Identify the logical volume associated with a file system by using the df
command.

2. Identify the “hdisks” associated with the logical volume by using the lslv -l
command.

3. Identify the “pdisks” associated with a given “hdisk” by using the ssaraid
command.

For example, in Figure 5-12, we show how to identify the physical disks
associated with filesystem /sys.

Figure 5-12 Mapping a filesystem to disks

The df /sys command in Figure 5-12 displays the filesystem mounted as /sys.
The Filesystem column shows the device on which the filesystem resides. For
local filesystems, these are found in /dev. In this case, the device is the logical
volume named systemsw.

The lslv -l systemsw command7 in Figure 5-12 lists a single hdisk, named
hdisk4, as being associated with the filesystem as reported in the PV column.

7 The -l option limits the report to the four columns shown.

 Chapter 5. Operating system considerations 365

However, these hdisks are not necessarily real disks, since they may be “virtual
disks”; therefore, more discovery is needed.

The lsdev -Cc disk command in Figure 5-12 on page 365 provides more
information about hdisk4. For example, had there been more hdisks associated
with the filesystem, then the following steps would need to be executed for each
one. The report indicates hdisk4 is an SSA Logical Disk Drive and it is on the bus
04-06 (ignore the -L).

The lsdev -Cc adapter command with the bus number in Figure 5-12 on
page 365 reveals the name and type of the disk adapter for hdisk4.

Figure 5-12 on page 365 describes the method for an SSA disk.

Up to this point, the commands used did not require root privileges. However,
subsequent commands may do so, as shown in Figure 5-12 on page 365.

The ssaraid command, with appropriate parameters, lists the physical disks
(“pdisks”) comprising the SSA logical disk or hdisk. We used the ssaraid
command in conjunction with other UNIX commands, as shown in Figure 5-12 on
page 365, to limit the output to show just the pdisks for hdisk4 (for example,
pdisk0, pdisk1, pdisk2, pdisk3, pdisk4, pdisk5 and pdisk6). Additional commands
filtering the ssaraid output (not shown here) may be used to determine whether
the pdisks are organized as RAID-0, RAID-5, and so on.

filemon
The filemon command uses the AIX trace facility to record information about
disks, logical volumes and files. Use of this command can be
processor-intensive.

In general, if you are trying to track down a disk performance problem, start with
the broadest monitoring: at the disk level. Filemon tracing may begin immediately
or be started later. In either case, the process needs to be explicitly stopped by
using the trcstop command. The shell script shown in Figure 5-13 on page 367
runs filemon for three minutes, starting immediately.

Note: At this point, it is still not possible to determine whether the hdisk is a
real disk or a virtual disk. There may or may not be a one-to-one mapping
between the hdisk and some real, physical disk. The method for determining
that mapping depends upon the disk/adapter type.

366 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 5-13 Sample filemon script

Command options specify the size of the memory buffers holding trace data, the
output file, and define what is traced. The script shown in traces logical volumes
and files (-lv, lf).

If the -u option is omitted, the trace will only include files, volumes, and so on
that are opened after the trace commenced. Since DB2 is likely to have opened
some files beforehand, the -u option should always be used. If a file was opened
prior to filemon starting, filemon will not be able to determine the filename;
however, the inode number will be displayed. For command options, refer to the
man page.

Filemon provides trace information down to the UNIX file level. For database
objects, use the db2 list tablespaces show detail command and the db2 list
tablespace containers for <tsid> show detail command to identify the
underlying UNIX files and the related DB2 containers. Figure 5-14 on page 368
shows an edited version of the results of some filemon output.

The Detailed File Stats section in Figure 5-14 on page 368 shows the full path
name of the file and the number of opens and seeks on the file in the sample
period. The read and write statistics show the number, average, minimum, and
maximum values. NaNQ represents “not a number”, and is typically caused by a
divide by zero or other similar arithmetic operation.

The Most Active Files section in Figure 5-14 on page 368 shows active files
ranked by throughput. The file name, inode, and volume are listed. Use the df
command to map volumes to filesystems.

The Most Active Logical Volumes section in Figure 5-14 on page 368 shows
active logical volumes, including raw and JFS log volumes, as well as those used
for filesystems. If the volume corresponds to a filesystem, the description column
shows the mount point for the filesystem.

 Chapter 5. Operating system considerations 367

Figure 5-14 Sample filemon output

iostat
The iostat command displays statistics on disk, adapter, and system
throughput. By default, the system does not collect detailed disk performance
statistics, since this has a performance overhead. Reporting can be limited to a
particular set of disks.

368 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 5-15 displays the result of the iostat command. The Disk history since
boot not available display indicates that detailed statistics are not being
collected. This can be changed by using the following command:

chdev -l sys0 -a iostat=true

The % tm_act column lists the percentage of time the disk was busy,
representing bandwidth utilization, while the tps column shows the number of
transfers per second to each disk.

Figure 5-15 iostat, 2-second sample interval

lsps
The lsps command displays information about the system paging space. It
displays the size of the page files in MBytes, and the percent used. Figure 5-16
shows the results of this command.

Figure 5-16 lsps command showing paging space utilization

 Chapter 5. Operating system considerations 369

Memory Visualizer
The Memory Visualizer is a DB2 tool that helps database administrators to
monitor the memory-related performance of an instance and all of its databases
organized in a hierarchical tree. DBAs can drill down into specific performance
areas to display values for the amount of memory allocated to the component
and the current memory usage in the Memory Visualizer window.

In UNIX, open the Memory Visualizer with the db2memvis command. Figure 5-17
on page 371 shows a typical display.

The tool displays bar graphs showing current utilization of components of
database global memory, database memory and application memory, along with
configuration parameter values and alarm and threshold settings.

The user can elect to graph utilization of various values over time. This is shown
in the lower pane of the display.

370 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 5-17 Memory Visualizer display

 Chapter 5. Operating system considerations 371

nmon
The nmon command is a public domain tool provided without warranty by IBM. It
can be downloaded from the World Wide Web at the following site:

http://www.ibm.com/servers/esdd/articles/analyze_aix/agree_down.html

nmon can operate in interactive mode or in recording mode.

� In interactive mode, nmon displays a variety of system information such as
CPU, disk, and memory utilization, various kernel counters, network
throughput and so on. The screen update interval can be varied.

� In recording mode, nmon samples kernel counters at a specified interval and
saves the data to a file in Microsoft® Excel .csv format.

There is a second public domain tool that makes use of either Excel 2000 or
Lotus® macros to analyze and graph the data. Additional information and a
pointer to the download site can be found at:

http://www.ibm.com/developerworks/eserver/articles/nmon_analyser/index.html

Figure 5-18 shows the results of the nmon command.

Figure 5-18 nmon interactive display

The CPU Utilization section in Figure 5-18 displays CPU activity in numerical
and graphical format.

372 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

http://www.ibm.com/servers/esdd/articles/analyze_aix/agree_down.html
http://www.ibm.com/developerworks/eserver/articles/nmon_analyser/index.html

The Memory Use section in Figure 5-18 on page 372 displays the amount of real
and virtual memory used, plus paging rates and vmtune information. This output
shows the system is using 98.6% of real memory, with 14.5 MB free. If this
amount drops below minfree (120 4 KB pages = 490 KB), then the system will
aggressively begin freeing up memory.

The paging rates section in Figure 5-18 on page 372 shows the number of pages
per second moved to and from both the paging system and the filesystems—and
this is an important distinction. Filesystem paging represents data being read
from or written to files in the filesystem, and is therefore “normal”. Paging to and
from the paging space should ideally be zero.

The Kernel Internal Statistics section in Figure 5-18 on page 372 show a
number of useful counters. The RunQueue represents the number of processes
waiting to run on a CPU; this value should ideally be zero.

The Disk I/O section in Figure 5-18 on page 372 shows disk utilization. If there
are a large number of disks, try using the Adapter I/O display instead (a option).

ps
The ps command displays information about processes. It can be used to identify
CPU-intensive processes. The ps command examines data in kernel memory,
which may be in a state of change. It gathers data on a per process basis. Note
that information on process sizes does not account for sharing of virtual memory
between processes. The data displayed in the %MEM, SIZE, TSIZ and RSS columns
do not reflect actual memory usage!

On AIX, there are two flavors of output: the X/Open standard, and the Berkeley
standard.

� X/Open output is displayed when command options with a hyphen (-) are
used.

� Berkeley options do not use a hyphen.

When no options are given, basic information about the current user’s processes
is displayed. This display is common to both formats.

CPU-intensive processes may be identified as follows:

� The C column (-f, -l, l) indicates the amount of time recently used by the
process in clock ticks. Look for a high number relative to other processes.

� The TIME column (all flags) shows the total time used by the process since it
started. Look for large values that are also increasing.

� The %CPU column (u, v) represents the time used by the process since it
started, divided by the elapsed time since the process started.

 Chapter 5. Operating system considerations 373

The two most useful option combinations are -elf as shown in Figure 5-19, and
aux as shown in Figure 5-20 on page 375.

Figure 5-19 shows the output of the ps command with options -elf. The columns
of most interest are as follows:

� UID - the user executing the command.

� PID - the process ID of the process.

� PPID - the PID of the process’s parent.

� WCHAN - if not blank, this corresponds to an address in the kernel at which the
process is suspended waiting for something (such as an I/O) to complete.

� STIME - the time (or date) the process started.

� TTY - the terminal the process was started on.

� TIME - minutes and seconds of CPU time.

� CMD - the command and its parameters. The amount displayed depends on
what ps finds in certain kernel data structures.

Figure 5-19 ps -elf command

374 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 5-20 ps aux example

Most of the columns in Figure 5-19 on page 374 and Figure 5-20 are the same;
however, the additional %CPU column in Figure 5-20 shows the percentage of time
that the process used the CPU since it started. It is calculated by dividing the
CPU time used by the elapsed time. The wait processes in Figure 5-20 are
system idle processes used to account for any time that the system is not
running user processes.

Figure 5-21 shows the output of the ps command with the options avx. Here
again, the output is similar, except for the additional PGIN column, which displays
the number of page faults that resulted in disk I/Os for this process.

Figure 5-21 ps avx example

 Chapter 5. Operating system considerations 375

sar
System activity recorder (sar) is common to all flavors of UNIX, and is therefore a
popular performance tool in multivendor environments.

sar records a large number of performance metrics, though some of them are not
useful or meaningful in AIX due to differences in its implementation. Check the
man pages for these specific details.

A standard script (crontab) is available that invokes sar to record system metrics
every 20 minutes from 08:00 to 17:00 Monday through Friday, and every hour
outside these times. This script has the entries commented out by default. If you
turn this collection on, sar retains the data for one week.

sar can be used to generate performance metrics for a particular item for a
number of samples at a specified interval by using the appropriate command
options. sar will also display metrics from a previously saved sar file.

Figure 5-22 shows sample output of the sar command.

Figure 5-22 sar default output

Note: sar is not installed by default in AIX 4.3.3 or AIX 5.1, and can be
installed from the bos.acct package. It is however, installed by default in AIX
5.2.

376 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

svmon
svmon displays various memory statistics for an individual process or selected
processes, and is used to discover users/processes consuming memory.

Figure 5-23 displays the output of the svmon command for an individual process
identified by its PID.

Figure 5-23 Output of svmon -P command

 Chapter 5. Operating system considerations 377

The first two lines in Figure 5-23 on page 377 show the process id and command
name followed by the number of memory pages used, amount of pinned memory,
the number of pages of paging space allocated, whether the process is 64-bit,
and whether it is multi-threaded.

The remainder of the output shows memory segment usage. The columns are
listed and explained in Table 5-5.

Table 5-5 svmon output

vmstat
The vmstat command displays statistics on memory usage, system load, and
run/blocked process queues.

Figure 5-24 on page 379 shows the output of vmstat.

Column name Meaning

Vsid Virtual segment id.

Esid Effective segment id, which corresponds
to the segment register number in
hexadecimal.

Type work - part of the program’s code or data
pers - a file
There are some additional types.

Description Depends on the type.
For a pers segment, this is the filesystem’s
logical volume and the file inode number.
You can use this to find the path name of
the file as shown at the bottom of the
figure.

In use Currently, the number of pages in real
memory for this segment.

Pin The number of pages pinned in this
segment.

Pgsp The number of pages used in paging
space for this segment. Only relevant for
working segments.

Virtual Number of pages allocated for the virtual
space tor the segment.

378 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 5-24 vmstat, 2-second sample interval

When using vmstat in interval mode, ignore the first row of values because some
counters represent cumulative values since system boot.

The kthr columns labelled r and b show the number of threads placed in the
relevant queue per second; that is, the run queue (r) and the wait queue (w).
Processes in the wait queue are blocked and waiting on some resource (for
example, IO completion).

The cpu columns show the percentages of user, system, idle and waitIO time.

If the number of memory pages in the fre column gets below a certain value (see
vmtune), the system starts paging out memory to get more free pages.

vmtune
vmtune displays or dynamically modifies various kernel parameters associated
with the virtual memory subsystem. To preserve settings across reboots, certain
steps need to be taken.

vmtune is not installed by default during operating system installation, but it can
be found in the bos.adt.samples fileset. vmtune is located in the
/usr/samples/kernel directory.

Figure 5-25 on page 380 displays the various operating system variables and
their values in column format; included are some counters useful in tuning
buffers.

Note: In AIX 5.2, the vmtune has been replaced by the commands vmo and
ioo. A consistent method has also been provided for preserving settings
across reboots.

 Chapter 5. Operating system considerations 379

Figure 5-25 Extract from vmtune -a output

Figure 5-26 on page 381 displays the results of the vmtune command where
values of several operating system variables are expressed as numbers of 4 KB
pages and percentages.

380 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 5-26 vmtune default output

5.3 Windows platform
Windows 2000 is Microsoft’s multiuser operating system on Intel® servers.

As with AIX, we briefly discuss the following key performance drivers:

� Operating system considerations

� Memory considerations

� Disk and filesystem considerations

 Chapter 5. Operating system considerations 381

Again as with the AIX platform, best practices and recommendations are
provided for each of these performance drivers, and are classified as being
general and DB2-specific. Typical performance monitoring tools for these
performance drivers are also described.

5.3.1 Operating system considerations
In this section, we provide the following:

1. Windows review
2. General performance recommendations
3. DB2-specific performance recommendations

Windows review
Current implementations of the Windows operating system are based on 32-bit
hardware (IA-32) and use 3-bit addressing. These implementations include
Windows 2000, Windows XP, Windows Advanced Server, and Windows
Datacenter Server. Most hardware platforms implement the IA-32 Physical
Address Extension architecture, which can address up to 64 GB of memory; see
Table 5-6.

Note the 64-bit implementations exist for the Datacenter editions of the WIndows
operating system, and they require corresponding 64-bit Intel or
IA-64-compatible hardware.

Table 5-6 Windows operating system characteristics

Windows 2003 operating systems versions support larger amounts of memory.

Both 32-bit and 64-bit implementations of DB2 are available on Windows. Unlike
the AIX environment, the DB2 bit size must match the Windows operating system
bit size.

The DB2 process model on Windows differs from that on UNIX systems in that
DB2 is implemented as a single process, multi-threaded application. The server
process is called db2sysc. Other processes exist for the administration server
(db2dasrrm), license management (db2licd), and so on.

A Windows NT (and Windows 2000) 32-bit process has a 4 GB address space.
This is normally split into 2 GB of kernel address space and 2 GB of user

Feature Windows 2000/XP Advanced Server Datacenter

CPU 4 8 32

Memory (GBytes) 4 8 64

382 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

address space. Hardware address protection mechanisms prevent the user
process instructions from accessing kernel space.

Support for more than 4 GBytes of memory requires one or more startup or boot
options in addition to DB2 configuration. These include the /PAE and /3GB boot
options.

The /3GB option changes the process address boundary so that the user
address space is 3 GB and the kernel address space is 1 GB. However, /3GB
cannot be used if you want to use more than 16 GBytes of memory. The /PAE
option enables access to memory beyond 4 GB.

General performance recommendations
� Add the following useful columns to your Task Manager: Memory Usage,

Memory Usage Delta, I/O Reads, I/O Read Bytes, I/O Writes, I/O Write Bytes.
See the Tools section for a description of these columns.

DB2-specific recommendations
� Following the installation of DB2, check that the DB2 performance counters

are visible from Performance Monitor.

� To take advantage of memory greater than 4 GBytes using the Address
Windows Extensions (AWE) feature, the DB2 administrator must have the
“lock pages in memory” user privilege.

� To increase the user address space of a Windows process from 2 Gbytes to
3 Gbytes, set the /3GB boot option. Do this by editing the boot.ini file and
adding /3GB to the end of the line defining the boot image. For example:

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Microsoft Windows 2000
Professional" /fastdetect /3GB

� If you intend to use AWE to access memory beyond 4 GBytes, add the /PAE
option to the boot.ini entry as above.

5.3.2 Memory considerations
In this section, we provide the following:

1. Windows virtual memory architecture review
2. General performance recommendations
3. DB2-specific performance recommendations

 Chapter 5. Operating system considerations 383

Windows virtual memory architecture review
The DB2 implementation on Windows uses a threaded model: there is only one
process, and all threads can access the process’s address space. Therefore,
there is no equivalent of the UNIX shared memory model.

Windows 2000 uses a virtual memory management subsystem similar to UNIX
systems. The paging space file is called pagefile.sys and is normally found in the
root directory of the C: drive. Additional paging space may be allocated as
required.

You can determine the current paging file allocation via My Computer ->
System Properties -> Performance Options -> Change. This displays the
Virtual Memory panel showing paging space allocation on drives, and allows
you to change the size of the paging space files. Setting the Initial Size and
Maximum Size values to the same value will prevent fragmentation.

You can use DB2 Memory Visualizer to show memory consumption for database
shared and global memory and agent private heaps.

Windows 32-bit processes can access memory above the 4 Gbyte boundary
imposed by a 32-bit hardware address pointer by using the Microsoft Address
Windows Extensions (AWE). DB2 can address the memory above 4 GB by
setting the DB2_AWE registry variable, and can utilize memory up to 64 GBytes for
buffer pools.

DB2 makes use of a “window” within the process’s user address space to access
memory above 4 GBytes. The size of the window is configurable and must be
between two buffer pool pages and 1.5 GBytes (or 2.5 GBytes, when the /3GB
option is used).

Memory accessed using AWE is associated with one or more buffer pools. The
buffer pool must be defined (that is, it must exist in SYSCAT.BUFFERPOOLS)
before it can be used by AWE. The DB2_AWE registry variable is used to define the
buffer pool, the number of pages in the buffer pool, and the size of the window.
Memory accessed via AWE is also “locked’; that is, it will not get paged out. This
can provide a performance benefit—but be aware that it may affect the
performance of other, non-DB2 processes. The format of the registry variable
setting is as follows:

db2set DB2_AWE=<buffer_pool_id>,number_of_pages, size_of_window

Where buffer_pool_id is the identifier for the buffer pool. This can be found in
the BUFFERPOOLID column of the relevant row in SYSCAT.BUFFERPOOLS. The
buffer pool must have been defined before you define the DB2_AWE variable entry.

384 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The number_of_pages represents the number of pages of “buffer pool page size”
in the memory region, and size_of_window represents the window size in “buffer
pool page size” pages. Thus the region size is:
(number_of_pages+size_of_window)*buffer_pool_page_size bytes.

To define multiple regions, add semi-colon-separated entries, as shown in the
following example:

db2set DB2_AWE=1,100,20;2,500,100

If AWE support is enabled, extended storage cannot be used for any buffer pools.

General performance recommendations
� Avoid placing paging files on system disks or heavily used disks, if possible.

The total paging space should typically be 1.5 times the amount of memory
on the system.

� Windows 2000 allocates paging space when the process allocates memory.
Therefore, paging space in pagefile.sys must be allocated for all potential
memory used by processes including DB2. Size the space required based on
the values of DB2 configuration variables.

� Monitor page faulting via Task Manager -> Processes/PF Delta or via
Performance Monitor and the Memory object. Using Performance Monitor,
you can graph Page Faults/sec. You may wish to add Pages Input/sec and
Pages Output/sec to the graph. Ensure you have a baseline against which to
compare abnormal performance.

As for AIX, page fault rates should ideally be zero, although a low number (for
example, between 10 and 20 page faults/second) is acceptable.

DB2-specific recommendations
We recommend the following best practices for DB2 on Windows:

1. If your system never or rarely pages and you have a great deal of memory
and paging space, set DB2MEMDISCLAIM=NO; otherwise, set
DB2MEMDISCLAIM=YES and set DB2MEMMAXFREE=8000000. DB2 registry variables
are set via the db2set command.

2. If the system is used exclusively for DB2 and ultimate performance is
required, consider defining buffer pool access via AWE (locking buffer pool
pages in memory).

3. If you have more than 4 GBytes of memory and can dedicate additional
memory to DB2, use AWE to define memory regions to access one or more
buffer pools in the space above 4 GBytes.

 Chapter 5. Operating system considerations 385

5.3.3 Disk and filesystem considerations
In this section, we provide the following:

� Disk subsystem overview
� Disk subsystem recommendations
� Filesystem recommendations
� DB2-specific recommendations

Disk subsystem overview
The observations about disk subsystem design in the AIX environment are also
relevant to larger Windows 2000 systems. However, smaller Windows 2000
systems are more likely to be configured with fewer adapters and disks. SCSI
RAID adapters are common in the Windows 2000 marketplace, and care is
required in laying out databases on these disk subsystems. Give careful
consideration to the physical placement of data and the potential for disk access
contention when files share disks.

Windows 2000 buffers filesystem reads in a similar manner to AIX. However, this
behavior can be modified by the DB2NTNOCACHE variable. The default value is OFF.
In this case, Windows caches all files (except those containing LOBs). If the
variable is set to ON, filesystem caching is eliminated allowing more memory for
buffer pools, sort heaps, and so on.

The variable DB2BPVARS can be used to set two parameters that can have an
impact on filesystem performance:

� NO_NT_SCATTER can only be used when DB2NTNOCACHE is ON. When
NO_NT_SCATTER is set to the value 1, DB2 will used “scattered reads” to read
pages into the buffer pool.

� NUMPREFETCHQUEUES (default = 1) may be set to a number between 1 and
NUM_IOSERVERS. It may be advantageous to increase NUMPREFETCHQUEUES on
systems with multiple CPUs and disk adapters. This will require
experimentation to determine the best values.

Altering these variables should be approached with caution, and subsequent
results should be verified with benchmarks.

The filemon tool from Sysinternals (see “filemon” on page 389) captures
information about access to files. It is capable of generating very large amounts
of output and, unless you have a multi-processor system, it may perturb
performance measurements. However, it will capture information about reads
and writes to individual files. This may help narrow the focus when attempting to
diagnose an IO performance problem.

386 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Disk subsystem recommendations
� Review the recommendations made in the AIX section (5.2.3, “Disk and

filesystem considerations” on page 346). Many of them also apply in Windows
environments.

Filesystem recommendations
The native filesystem for Windows 2000 is NTFS. It provides the ability to create
large files. There are several features which can be configured to improve
performance:

� Use a large cluster size. The cluster size is the unit of space allocation and
can vary from 512 bytes to 64 KB. Use a larger size to enable larger files to be
created.

Note: The cluster size is set when the filesystem is created and cannot be
changed.

� Do not use file compression, because it requires additional processing
overhead. If additional storage is required, invest in more disks.

� Disable Last Access time stamp. As Windows traverses directories (folders), it
updates the Last Accessed time stamp costing unnecessary disk IOs. Disable
this feature by using the Registry Editor to select
HKEY_LOCAL_MACHINE->System->CurrentControlSet->Control->Filesystems
and add a key named NtfsDisableLastAccessUpdate of type REG_DWORD with a
value of 1.

DB2-specific recommendations
� If you use DMS file containers, set DB2NTNOCACHE=ON to eliminate filesystem

caching. This prevents double data movement and also allows you to assign
more memory to buffer pools.

5.3.4 Monitoring and problem determination tools
DB2 UDB’s port to the Windows platform is well integrated with common
Windows utilities such as Event Manager and Performance Manager.

Microsoft provides several performance monitoring tools with Windows 2000.
Additional tools and information are available in the Windows 2000 Resource Kit
at the following URL:

http://www.microsoft.com/windows2000/techinfo/reskit/default.asp

 Chapter 5. Operating system considerations 387

http://www.microsoft.com/windows2000/techinfo/reskit/default.asp

A number of third party tools are also available to monitor Windows performance.
Sysinternals provides a number of particularly useful tools that may be
downloaded at no charge:

http://www.sysinternals.com

This section provides a brief description of Windows facilities for monitoring and
tuning the performance of the operating system. Table 5-7 lists tools that are
commonly used to monitor various resources of interest (this is not a
comprehensive list).

Table 5-7 Suggested tool usage

This section covers the following topics:

� Mapping filesystems to physical disks
� filemon
� Memory Visualizer
� Performance Monitor
� Task Manager
� DB2 Performance Expert for Multiplatforms, described in 2.6.6, “DB2

Performance Expert” on page 88

A brief overview of each tool is provided, along with sample output.

Mapping filesystems to physical disks
Windows filesystems are placed on volumes when the volumes are formatted.
Volumes are created by partitioning disks and defining volumes in unallocated
disk space. Use the Disk Management tool for these tasks. This tool can be
found via Start -> Settings -> Control Panel -> Adminstrative Tools ->
Computer Management.

The disk management tool shows the relationship between filesystems (for
example, C:\ and D:\) and disks (for example, Disk 0). This is relatively simple for
single IDE or SCSI disks.

RAID disk controllers typically present one or more logical disks as, for example,
Disk 0, Disk 1, and so on. Identification of the underlying physical disks for each

Performance problem Suggested tools

High CPU utilization Task Manager, Performance Monitor

Not enough memory Task Manager, Performance Monitor

Paging and/or swapping Performance Monitor, Memory Visualizer

Disk or filesystem Task Manager, Performance Monitor,
filemon

388 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

http://www.sysinternals.com

logical disk depends on the RAID device driver, and varies between different
device drivers or RAID products.

Figure 5-27 Windows 2000 Disk Management tool

filemon
filemon monitors and displays filesystem activity in real time, which makes it a
powerful tool for tracking disk and filesystem performance problems. By default, it
generates a lot of output since it records every read and write to every file;
however, output can be filtered to reduce the volume of data produced.

Figure 5-28 on page 390 shows the output from filemon that was filtered to
show only files in the DB2 database directory; this was done by selecting
Options -> Filter/Highlight and changing the Include: selection to C:\DB2*.

This display shows file accesses during a connect to <database> statement.

Note: filemon is a public domain tool from Sysinternals; see:

http://www.sysinternals.com

 Chapter 5. Operating system considerations 389

http://www.sysinternals.com

Figure 5-28 filemon utility display

Memory Visualizer
As mentioned earlier, Memory Visualizer monitors the memory usage of DB2
UDB Version 8 databases. It is a GUI-based application that runs under Windows
but can be used to display data from Windows or AIX-based DB2 databases.

To open the Memory Visualizer in Windows, select Start -> Programs -> IBM
DB2 -> Monitoring Tools -> Memory Visualizer. The Memory Visualizer
instance selection window opens. Figure 5-17 on page 371 shows a typical
display.

Performance Monitor
Performance Monitor provides a graphical display and logging mechanism for a
number of Windows 2000 components such as processor, memory, software
subsystems and so on. The components are organized as groups of
“Performance Objects” of which there are more than 32, and each object has a
number of associated counters. For example:

� The “Process” object has counters for %Processor Time and %User TIme,
plus various I/O and page fault counters.

390 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

� The “DB2” object has approximately 30 associated counters. Figure 5-29
shows how to add a counter showing idle agents on the DB2CTLSV instance
to the Performance Monitor graph.

Figure 5-29 Adding a counter to the Performance Monitor graph

You add counters to the Performance Monitor graph by right-clicking in the graph
area. This displays a pop-up which allows you to select “add counters”. Selecting
“add counters” displays the screen shown in Figure 5-29. An Explain button
provides information about each counter.

Figure 5-30 on page 392 shows processor utilization while running a simple
query.

 Chapter 5. Operating system considerations 391

Figure 5-30 Performance Monitor

Task Manager
The Task Manager can be invoked by Ctrl+Alt+Delete and selecting the Task
Manager to view the window shown in Figure 5-31 on page 393. The Processes
tab provides a large amount of useful information about processes running on
the system.

392 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 5-31 Task Manager process display ranked by CPU utilization

By default, the process list is ranked by CPU utilization. To change the ranking
column, simply click that column’s heading. To reverse the ranking order, that is,
lowest to highest, click the heading again.

The columns to be viewed in this window can be selected through the
View/Select Columns Taskbar option, as shown in Figure 5-32 on page 394.
We suggest adding the following useful columns to your Task Manager: Memory
Usage, Memory Usage Delta, I/O Reads, I/O Read Bytes, I/O Writes and I/O
Write Bytes.

 Chapter 5. Operating system considerations 393

Figure 5-32 Task Manager Select Column panel

394 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Chapter 6. Problem determination
scenarios

In this chapter, we discuss some commonly encountered problems in a DB2
OLTP and BI environment, and describe scenarios for identifying and resolving
such problems.

The topics covered include:

� DB2 hypotheses hierarchy
� Exception events scenarios
� Online/Realtime event monitoring scenarios
� Routine monitoring scenarios

6

© Copyright IBM Corp. 2004. All rights reserved. 395

6.1 Introduction
Most IT environments today are complex infrastructures involving heterogeneous
network, hardware, and software components organized in multi-tier
configurations. Business applications share this complex IT infrastructure, which
is managed by IT professionals skilled in their particular domain of expertise, for
example, network administrators, operating system administrators, Web
application server administrators, and database administrators.

As mentioned earlier, users may experience performance problems for reasons
such as network connectivity and bandwidth constraints, system CPU, I/O and
memory constraints, software configuration limitations and constraints,
inadequate systems administration skills, poor application design, and faulty
assumptions about the workload. In this chapter, we address the following
related topics:

1.4, “Problem determination methodology” on page 7 discusses a general
problem determination methodology, and recommends a hypotheses validation
hierarchy that should typically be followed during problem diagnosis of DB2
applications in general.

For the DB2 application environment shown in Figure 6-1 on page 397, the
diagnosis process should sequentially eliminate the cause of the problem as
follows:

1. Network-related - between the client and the Web application server

2. Web application server-related - both system (CPU, I/O, memory) and various
configuration settings

3. Network-related - between the Web application server and the database
server

4. Database server-related - system (CPU, I/O, memory), configuration settings,
and routine DBA maintenance activities such as collecting statistics or
reorganizing tables

5. Application design-related - tables and SQL

Important: Following this sequence is strongly recommended in order to
ensure that the DBA does not expend needless effort on troubleshooting DB2,
when the root cause of the performance problem experienced by the user
potentially exists elsewhere. For example, network bandwidth constraints or
resource contention in the Web application server can manifest as erratic or
poor response times for a user of a DB2 application even when the DB2
system and application is perfectly tuned.

396 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-1 A typical DB2 application environment and hypotheses hierarchy

Table 6-1 on page 398 provides a very high level overview of the resource
constraint conditions associated with the components that the application utilizes

Note: Depending upon the triggering event of the performance problem, it
may be possible to skip certain hypotheses validation altogether. For
example, when an explicit alert about a lock escalation threshold being tripped
is the triggering event, you can ignore hypotheses such as network
connectivity and bandwidth constraints, Web application server constraints,
and CPU and I/O constraints (in both the Web application server and the DB2
database server) as a potential cause of the problem.

Web Application
Server (WAS)

Network

Network

DB2
Database Server

Local
Clients

Remote
Clients

Connectivity
Bandwidth

System CPU
System I/O
System Memory
DB2 related

Hypotheses
Hierarchy

Connectivity
Bandwidth

System CPU
System I/O
System Memory
WAS related

 Chapter 6. Problem determination scenarios 397

in the execution of its functions, along with tools that can be used to investigate
them.

Table 6-1 Typical problem areas associated with DB2 app. performance

For a description of AIX tools and examples of their output, see 5.2.4, “Monitoring
and problem determination tools” on page 363. For Windows tools, see 5.3.4,
“Monitoring and problem determination tools” on page 387. For details on
WebSphere Application Server, refer to the IBM Redbook DB2 UDB/WebSphere
Performance Tuning Guide, SG24-6417.

We focus on DB2-related resource constraint conditions in the following section,
and recommend the hypotheses hierarchy to adopt for problem diagnosis.

Component Resource constraint conditions Tools

Network � Connectivity
� Bandwidth

ping, connect, db2 ping, ftp

System � CPU utilization
� I/O utilization and performance
� Memory paging

� vmstat, nmon, uptime,
ruptime

� iostat, nmon
� vmstat,nmon,svmon,ipcs

Web
application
server

� System resource constraints
� Connections to DB2
� Configuration parameters

� as above
� Resource Analyzer
� WebSphere tools

DB2
database
server

� System resource constraints
� DB2 resource constraints
� DB2 application design

� as above
� DB2 commands & tools

Important: In most cases, the DBA has no jurisdiction over monitoring and
tuning network, system, and Web application server performance drivers,
since they are the responsibility of the appropriate administrator.

The objective here is to make DBAs aware of the critical impact on the
performance of their DB2 environment by the various network, operating
system and Web application server performance drivers, so that they may be
in a position to negotiate more effectively with the appropriate administrators
responsible for these performance drivers.

Note: We used DB2 UDB Version 8.1.1 in all the scenarios discussed in this
section.

398 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

6.2 DB2 hypotheses hierarchy
Once the network and systems have been tentatively eliminated as the potential
source of the performance problems, we need to narrow the focus to the
database server itself.

However, within the database server itself, there is a definite hierarchy of
hypotheses validation that must be adopted for effective problem diagnosis, as
shown in Figure 6-2.

Figure 6-2 DB2 hypotheses hierarchy

The hierarchy is as follows:

1. DB2 database server system resource constraints

2. DB2 system resource constraints

3. DB2 application design-related

Resource constraint conditions associated with each of these items are
described in the following subsections.

Connections
Sorts
Locks
Buffer pool
Caches
Miscellaneous

DB2 System
Resource Constraints

Table spaces
Tables/Views
Indexes
SQL

DB2 Application Design

System CPU
System I/O
System Memory

DB2 Database Server System
 Resource Constraints

 Chapter 6. Problem determination scenarios 399

6.2.1 DB2 database server system resource constraints
The system on which the DB2 database server is running needs to be monitored
to ensure that CPU, I/O, and memory consumption is within normal bounds
before validating hypotheses further down in the hierarchy.

In some cases, this monitoring of the system resources in general, and DB2
processes in particular, may highlight potential problem areas that need further
investigation lower down in the hierarchy to pinpoint the problem; for example,
high I/O utilization may indicate excessive contention due to poor placement of
highly active tablespaces on the same drive.

6.2.2 DB2 system resource constraints
Certain DB2 database manager and database configuration settings may result
in applications suffering response time problems due to the following:

� Connection constraints
� Sorting constraints
� Locking constraints
� Buffer pool constraints
� Cache size constraints, such as catalog and package
� Miscellaneous constraints, such as enabling intra-partition parallelism

Note: Checking for whether DB2 processes are running is a special case of
system-level resource consumption checking.

The AIX ps -ef | grep db2 command and the Windows Task Manager can
be used to identify DB2 processes.

Important: These constraints are not ordered by the impact they have on
performance, but by the sequence in which problem diagnosis is
recommended.

In many cases, problem diagnosis is a holistic affair where a particular
problem is best diagnosed by combining monitoring results of multiple events
and entities.

400 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

The following subsections identify many of the key database manager
configuration and database configuration parameters associated with each of
these constraints, and describe some of the monitoring elements that should be
used to configure them optimally.

The monitoring elements are reported in the snapshot monitor, and may
represent water marks, counters, time and gauges.

Connection constraints
Connection problems are generally manifested as messages generated by an
application when a connection exception is returned to the application. The

Important: This section does not discuss every monitoring and tuning knob
available in DB2 to manage the performance of the DB2 environment. The
purpose of this section is to promote a top-down discipline to the process of
problem diagnosis by discussing some of the more important DB2 resource
constraints that impact DB2 performance.

In practice, the impact of a particular resource constraint on overall DB2
performance depends a great deal upon the nature and priorities of the
application workload and the resources available for its execution. For
example, with a read-only data warehousing type of workload, locking
constraints are likely to play an insignificant role in overall DB2 performance,
while sorting constraints will probably have considerable performance impact.

Note: Database manager configuration settings can be viewed by issuing the
following command:

db2 get dbm cfg

Database configuration settings can be viewed by issuing the following
command:

db2 get db cfg for <database_name>

Attention: When the monitoring elements are not high water marks, they
should be sampled at specific intervals over an extended period of time to get
a realistic view of system usage.

In some cases, it may be necessary to reset counters at the start of the
monitoring interval to get an accurate view of activity.

 Chapter 6. Problem determination scenarios 401

following database manager configuration and database configuration
parameters can constrain the number of connections permitted:

� Database manager configuration parameters
– max_connections
– maxagents
– maxcagents
– max_coordagents

� Database configuration parameters
– maxappls

To determine whether connections problems are being experienced, the
snapshot monitor should be invoked during the appropriate monitor interval, and
relevant fields checked, as follows:

� For the database manager configuration parameters max_connections,
maxagents, maxcagents and max_coordagents, relevant snapshot contents
are shown in Example 6-1.

Example 6-1 dbm snapshot for connections

db2 => get snapshot for dbm
...
Remote connections to db manager = 0
Remote connections executing in db manager = 0
Local connections = 4
Local connections executing in db manager = 0
Active local databases = 1

High water mark for agents registered = 5
High water mark for agents waiting for a token = 0
Agents registered = 5
Agents waiting for a token = 0
Idle agents = 0
....
Agents assigned from pool = 2
Agents created from empty pool = 7
Agents stolen from another application = 0
High water mark for coordinating agents = 5
Max agents overflow = 0
Hash joins after heap threshold exceeded = 0
.....

Check the following values:

– Sum of (Remote connections to db manager + Local connections)
should be less than max_connections.

402 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

If this value is the same as the max_connections, then it is likely that some
database connection requests were rejected.

– High water mark for agents registered should be less than maxagents.

If this value is the same as the maxagents, then it means that connections
may have failed.

– High water mark for agents waiting for a token should be equal to zero
in unconstrained systems.

If this value is the same as the maxcagents, then it means that certain
applications had to wait, since a transaction cannot be initiated without
getting a token.

– High water mark for coordinating agents should be less than
max_coordagents.

If this value is the same as the max_coordagents, then it means that agent
creations may have failed.

� For the database configuration parameters maxappls, relevant snapshot
contents are shown in Example 6-2.

Example 6-2 db snapshot for connections

db2 => get snapshot for all on sample
...
High water mark for connections = 3
Application connects = 3
Secondary connects total = 0
Applications connected currently = 3
Appls. executing in db manager currently = 0
Agents associated with applications = 3
Maximum agents associated with applications= 3
Maximum coordinating agents = 3
...

Check that the High water mark for connections is less than maxappls,
unless maxappls is specified as being AUTOMATIC.

If this value is the same as the maxappls parameter, then it is likely that some
database connection requests were rejected.

Note: These values are not high water marks, and should therefore be
sampled at specific intervals over an extended period of time and at
representative intervals to get a realistic view of system usage.

 Chapter 6. Problem determination scenarios 403

Sorting constraints
Sorting problems are generally manifested as poor response times for the
application, and as the occasional application error message when sort heap
hard limits are exceeded.

The following database manager configuration and database configuration
parameters can impact sort performance:

� Database manager configuration parameters
– sheapthres

� Database configuration parameters
– sheapthres_shr
– sortheap

To determine whether sorting problems are being experienced, the snapshot
monitor should be invoked during the appropriate monitor interval, and relevant
fields checked, as follows:

� For the database manager configuration parameter sheapthres, relevant
snapshot contents are shown in Example 6-3.

Example 6-3 dbm snapshot for sorting

db2 => get snapshot for dbm
...
Private Sort heap allocated = 0
Private Sort heap high water mark = 277
Post threshold sorts = 0
Piped sorts requested = 10
Piped sorts accepted = 10
...
Agents assigned from pool = 2
Agents created from empty pool = 7
Agents stolen from another application = 0
High water mark for coordinating agents = 5
Max agents overflow = 0
Hash joins after heap threshold exceeded = 0
...

Check the following values:

– Private Sort heap high water mark should be less than sheapthres.

If this value is greater than or equal to sheapthres, then it means that the
sorts are not getting the full sort heap as specified by the sortheap
database configuration parameter.

– Post threshold sorts should be very small, if not zero.

404 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

When post threshold sorts occur, the database manager allocates a
smaller sort heap than that specified by the sortheap database
configuration parameter. Subsequent sort heap allocations are reduced
even further until the total amount of sort heap in use falls below the
amount specified for sheapthres. This situation causes a serious
degradation in database performance and should be avoided.

– Difference between Piped sorts requested and Piped sorts accepted
should be very small, if not zero.

If this value is high, then it means that piped sorts are being rejected
because the sort heap threshold (sheapthres) would be exceeded when
the sort heap is allocated for the sort.

– Hash joins after heap threshold exceeded should be very small, if not
zero.

If this value is non-zero, then it means that it means that a hash join heap
request was limited because of the sort heap threshold (sheapthres) being
exceeded. This value should be used in conjunction with Hash join
overflows to calculate the percentage of such occurrences.

� For the database configuration parameters sheapthres_shr and sortheap,
relevant snapshot contents are shown in Example 6-4.

Example 6-4 db snapshot for sorting

db2 => get snapshot for all on sample
...
Total Private Sort heap allocated = 0
Total Shared Sort heap allocated = 0
Shared Sort heap high water mark = 0

Note: This value is not a high water mark, and should therefore be
sampled at specific intervals over an extended period of time and at
representative intervals to get a realistic view of such occurrences.

Note: Here too, these values are not a high water marks, and should
therefore be sampled at specific intervals over an extended period of
time and at representative intervals to get a realistic view of such
occurrences.

Note: This value is not a high water mark, and should therefore be
sampled at specific intervals over an extended period of time and at
representative intervals to get a realistic view of such occurrences.

 Chapter 6. Problem determination scenarios 405

Total sorts = 1
Total sort time (ms) = Not Collected
Sort overflows = 1
Active sorts = 0
...

Check the following values:

– Shared Sort heap high water mark should be less than sheapthres_shr.

If this value is equal to sheapthres_shr, then it means that the total
amount of database shared memory that can be used for sorting at any
one time has been exceeded, and subsequent sorts will fail with an
SQL0955C message.

– Sort overflows should be very small, if not zero.

A non-zero value indicates that sorts ran out of sort heap (sortheap) and
had to overflow to disk. This value should be used in conjunction with
Total sorts to calculate the percentage of sorts that overflowed to disk.

Locking constraints
Locking problems are generally manifested as poor response times, and the
occurrences of deadlocks and timeouts. Certain locking problems, such as lock
escalations and deadlocks, are also reported in the db2diag.log.

The following database configuration parameters can severely impact the
amount of concurrency and throughput achievable.

� Database configuration parameters
– dlchktime
– locklist
– locktimeout
– maxlocks

To determine whether locking problems are being experienced, the snapshot
monitor should be invoked during the appropriate monitor interval, and relevant
fields should be checked as shown in Example 6-5.

Example 6-5 db snapshot for locking

db2 => get snapshot for all on sample
...
Locks held currently = 1

Note: This value is not a high water mark, and should therefore be
sampled at specific intervals over an extended period of time and at
representative intervals to get a realistic view of such occurrences.

406 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Lock waits = 0
Time database waited on locks (ms) = 0
Lock list memory in use (Bytes) = 540
Deadlocks detected = 0
Lock escalations = 0
Exclusive lock escalations = 0
Agents currently waiting on locks = 0
Lock Timeouts = 0
...

Check the following values:

� The ratio of Time waited on locks and Lock waits is a measure of the
average duration of each lock wait, and should be subsecond or a few
seconds only.

If this number is high, it could be due to applications holding too many locks,
for extended durations, or lock escalations. It is also possible that extended
lock wait durations may point to a problem with the locktimeout value.

� Lock escalations and Exclusive lock escalations should be kept to a
minimum.

If a large number of escalations are seen over a short interval, then it could
mean that the locklist and/or maxlocks values are too small. These values
should be evaluated in conjunction with Deadlocks detected, Lock waits,
and Time waited on locks.

� Deadlocks detected and Lock timeouts should be kept to a minimum.

If a large number of deadlocks and lock timeouts are seen over a short
interval, then it could mean that the dlchktime value is too large and the
locktimeout value is too small. Here again, these values should be evaluated
in conjunction with Lock escalations, Exclusive lock escalations, Lock
waits, and Time waited on locks.

Note: Further detailed information about lock escalations can be obtained
from the db2diag.log.

Note: In all these cases, the monitoring elements are counters or gauges
representing a specific point in time, and should therefore be sampled at peak
or heavy workload intervals to ascertain whether locking problems exist; this
should involve resetting the counters at the start of the monitoring interval.

 Chapter 6. Problem determination scenarios 407

Buffer pool constraints
Buffer pool problems are generally manifested as poor response times as a
result of increased synchronous I/Os or operating system paging. The key metric
to measure here is the hit ratio achieved (the higher, the better).

Buffer pools are defined via the CREATE BUFFERPOOL SQL statement, and
are allocated at database activation. Buffer pools are used by tables, indexes,
and sort temporary tablespaces.

To determine whether buffer pool problems are being experienced, the Snapshot
Monitor should be invoked during the appropriate monitor interval, and relevant
fields checked as shown in Example 6-6.

Example 6-6 db snapshot for buffer pools

$ db2 "get snapshot for all on dtw"
.....
Buffer pool data logical reads = 5160
Buffer pool data physical reads = 1485
Buffer pool data writes = 0
Buffer pool index logical reads = 18371
Buffer pool index physical reads = 3064
Total buffer pool read time (ms) = 69774
Total buffer pool write time (ms) = 0
Asynchronous pool data page reads = 0
Asynchronous pool data page writes = 0
Buffer pool index writes = 0
Asynchronous pool index page reads = 16
Asynchronous pool index page writes = 0
Total elapsed asynchronous read time = 268
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
Direct reads = 236
Direct writes = 0
Direct read requests = 58
Direct write requests = 0
Direct reads elapsed time (ms) = 483
Direct write elapsed time (ms) = 0
Database files closed = 0
Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0

Note: Buffer pool information is typically gathered at a tablespace level, but
the facilities of the Database System Monitor can roll this information up to the
buffer pool and database levels.

408 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Unread prefetch pages = 0
Vectored IOs = 0
Pages from vectored IOs = 0
Block IOs = 0
Pages from block IOs = 0
Physical page maps = 0

� Compute the total buffer pool hit ratio as:

(1 - ((Buffer pool data physical reads + Buffer pool index physical
reads) / (Buffer pool data logical reads + Buffer pool index logical
reads))) * 100%

� Compute the index hit ratio as:

(1 - ((Buffer pool index physical reads) / (Buffer pool index logical
reads))) * 100%

Cache size constraints
There are several caches in DB2, and problems with their size are generally
manifested as poor response times as a result of a increased synchronous I/Os
or operating system paging.

To determine whether catalogcache_sz and pckcachesz problems are being
experienced, the snapshot monitor should be invoked during the appropriate
monitor interval, and relevant fields checked, as shown in Example 6-7 on
page 410.

Note: In this case, the monitoring elements are counters representing a
specific point in time, and should therefore be sampled at peak or heavy
workload intervals to ascertain whether buffer pool problems exist; this should
involve resetting the counters at the start of the monitoring interval.

Note: There are several database manager and database caches that can be
specified such as aslheapsz, audit_buf_sz, java_heap_sz, query_heap_sz,
and applheapsz, to name a few.

The objective is to determine if these caches are too small or too big. Each of
these has slightly different monitor elements to look at, as described in
Chapter 3, “Application design and system performance considerations” on
page 107.

We focus here on catalogcache_sz and pckcachesz. The key metrics to
assess the efficiency of these caches are hit ratios, overflows, and high water
marks.

 Chapter 6. Problem determination scenarios 409

Example 6-7 db snapshot for catalogcache_sz and pckcachesz

db2 => get snapshot for all on sample
...
Package cache lookups = 4
Package cache inserts = 2
Package cache overflows = 0
Package cache high water mark (Bytes) = 118968
Application section lookups = 6
Application section inserts = 2

Catalog cache lookups = 13
Catalog cache inserts = 5
Catalog cache overflows = 0
Catalog cache high water mark = 0
...

� The hit ratio for the package cache is computed as follows:

(1 - (Package cache inserts / Package cache lookups)) * 100%

� Package cache overflows should be kept to zero.

If this number is non-zero, then it means a spillover has occurred into other
heaps, such as locklist, thereby resulting in unnecessary lock escalation and
general performance degradation.

� Package cache high water mark (Bytes) represents the largest size
reached by the package cache, and can be used to determine the value for
the pckcachesz database configuration parameter to avoid cache overflows.

Note: Except for the Package cache high water mark (Bytes) monitoring
element, the other elements reported are counters representing a specific
point in time, and should therefore be sampled at peak or heavy workload
intervals to ascertain whether package cache size problems exist; this should
involve resetting the counters at the start of the monitoring interval.

Miscellaneous constraints
There are a host of other database manager and database configuration
parameters that can impact the performance of DB2 applications. Details of their
individual performance impact, and monitoring and tuning considerations, are
described in Chapter 3, “Application design and system performance
considerations” on page 107.

Important: The same considerations as discussed for pckcachesz also
apply to catalogcache_sz.

410 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Some of the parameters of interest are as follows:

� Database manager configuration parameters

– intra_parallel

– maxfilop and maxtotfilop

– rqrioblk

– num_poolagents

� Database configuration parameters

– chngpgs_thresh

– logbufsz

– num_iocleaners

– num_ioservers

� Registry and environment variables

– DB2_PARALLEL_IO

– DB2MEMDISCLAIM

– DB2MEMMAXFREE

– DB2NTMEMSIZE

– DB2_PINNED_BP

DB2 application design-related
The monitoring of DB2 system resource constraints on page 400, and DB2
resource constraints on page 400, may either fail to identify any cause of
performance problems, or provide clues to potential performance problems in the
application such as SQL access paths and faulty design.

� An example of SQL access path problems might be a missing index resulting
in a table scan, while a faulty design example might be an inappropriate
choice of dimension keys for an MDC table.

� An example of a clue in DB2 resource constraints that points to an application
design-related SQL access path problem of a missing index, might be a
discovery of excessive sort times for an application in an OLTP environment.

Attention: Pinpointing a specific poorly performing application and SQL
statement may require the DBA to initiate exception monitoring activities such
as activating monitor switches and issuing relevant get snapshot commands,
raising the diaglevel, and creating and activating Event Monitors under
controlled conditions (that is, for short bursts during the problem interval).

 Chapter 6. Problem determination scenarios 411

The performance of an SQL statement depends upon many factors including:

� Poor access path selection due to missing indexes, missing or outdated
statistics, disorganized tables, or data distribution profile changes.

� Poor application design such as poorly written SQL, or poorly designed
tables.

Poor access path selection
The process of verifying access path selection involves the following:

� Using EXPLAIN
� Identifying available indexes
� Ensuring tables/indexes are well organized and do not require reorganization
� Ensuring statistics are up to date
� Using Design Advisor for index recommendations

These tasks can be accomplished via the Control Center, or by using DB2
commands via the Command Line Processor.

Poor application design
This requires detailed analysis of the application in question, and applying best
practices as described in 3.3, “Application design considerations” on page 111.

6.3 Exception event scenarios
Exception events frequently manifest themselves in the form of user complaints
about poor response times, or unexpected application error messages including
timeouts and deadlocks. Adopting a consistent problem determination
methodology as described in “Problem determination methodology” on page 7
will ensure speedy resolution of performance problems.

The following subsections cover the following problem determination scenarios:

1. Lock waits due to default LOCKTIMEOUT value (OLTP)
2. Poor SQL performance due to missing indexes (OLTP)
3. Poor SQL performance due to unused MQTs (BI)

Note the following points in regard to the scenarios:

1. The workload and environments were artificially contrived to produce the
relevant problem condition for the problem diagnosis exercise; therefore,
certain settings can clearly been seen to be “inappropriate” in real world
environments.

2. The emphasis of these scenarios is on problem diagnosis, and not on
problem resolution per se. Best practices for problem resolution are

412 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

discussed briefly, but not applied to demonstrate the elimination of the
problem.

We have organized the description of each scenario as follows:

� Description of the application
� Environment configuration
� Monitor level settings
� Workload used
� Triggering event
� Hypotheses and validations
� Root cause of the problem
� Apply best practices

6.3.1 Lock waits due to default LOCKTIMEOUT value (OLTP)
Lock waits are a common and natural occurrence in any multi-user application
environment. A well-designed application will minimize lock waits by using
appropriate locking levels when accessing shared data. However, from time to
time, excessive numbers of lock waits or lock waits for extended periods may
give rise to user complaints about poor performance.

In this scenario, we show how a lock wait problem caused by the default value of
LOCKTIMEOUT causes a performance problem. The default LOCKTIMEOUT
value of -1 will cause one or more applications to wait indefinitely for rows or
tables that are locked by another application.

System defaults are often accepted in the real world and can lead to the kinds of
problems described here.

Description of the application
We used the Trade2 OLTP application, and some additional uncommitted SQL
statements simulating contending applications, to demonstrate this scenario. The
Trade2 application is described in Appendix B, “Workloads used in the scenarios”
on page 485.

The SQL statements used in the application are described in Figure 6-3 on
page 414 and Figure 6-4 on page 414. Figure 6-3 shows a batch file consisting
of an SQL UPDATE statement that does not commit. This will result in all updated
rows being locked until a commit is issued.

Note: Our intention with the batch file in Figure 6-3 was to simulate the
problem of applications performing “infrequent commits”, which can
undermine concurrency and result in erratic response times.

 Chapter 6. Problem determination scenarios 413

Figure 6-3 lock timeout example update statement

Figure 6-4 shows a second batch file that consists of an SQL SELECT statement
that attempts to read the rows being updated by the batch file shown in
Figure 6-3. Since the requested rows are locked, the application represented by
the batch file shown in Figure 6-4 has to wait until the lock is released by the
batch file application shown in Figure 6-3.

Figure 6-4 lock timeout example select statement

Environment configuration
We used a single AIX pSeries Model 270 to run the WebSphere Application
Server and DB2 database, and a Windows 2000 PC to drive the Trade2
application on the WebSphere Application Server. The uncommitted SQL
applications accessed DB2 from a Windows 2000 UNIX X terminal emulator.

Table 6-2 and Figure 6-5 on page 415 highlight the details of the environment.

Table 6-2 LOCKTIMEOUT scenario configuration

Hardware configuration Software configuration

pSeries Model 270
2 CPUs
1 GB RAM
2 x 36GB SCSI disks

AIX 5.1 ML03
DB2 V8.1 FP1
WebSphere Application Server 4.0.5

PC Windows 2000
akstress tool

Laptop Windows 2000
Exceed X terminal emulator

414 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-5 LOCKTIMEOUT scenario architecture

Monitor level settings
We used the following recommended settings for routine monitoring in an OLTP
environment, as shown in Figure 6-6:

� Set monitor switches DFT_MON_BUFPOOL, DFT_MON_SORT, DFT_MON_TABLE,
DFT_MON_TIMESTAMP, DFT_MON_UOW, and HEALTH_MON to ON.

� Set monitor switches DFT_MON_LOCK and DFT_MON_STMT to OFF.

� Accept the DIAGLEVEL default setting (3).

Figure 6-6 Recommended monitor switch settings for OLTP routine monitoring

 Chapter 6. Problem determination scenarios 415

Workload used
We used the akstress tool (described in B.4, “Trade2 database and application”
on page 487) to simulate 20 users of the Trade2 application, with each user
performing a login followed by a single query and logout. We ran this workload for
20 minutes.

The success or failure of each transaction is displayed on an akstress
monitoring window. We assumed, for the purposes of this scenario, that if a
significant number of transactions failed for any reason, a user would register a
complaint. We also ran the batch files from multiple DB2 command line
processor windows.

Triggering event
Several user complaints about not getting any response from the system, while
others complained about experiencing erratic response times.

Hypotheses and validations
We adopted the hypotheses hierarchy as described in “Problem determination
methodology” on page 7, and validated each hypothesis in turn as follows:

� Hypothesis 1: Network performance problems

� Hypothesis 2: WebSphere Application Server performance problems

� Hypothesis 3: DB2 database server system problems

� Hypothesis 4: DB2 system problems

� Hypothesis 5: DB2 application problems

Hypothesis 1: Network performance problems
The network administrator was consulted, and we were advised that the network
had been and was operating within normal bounds.

Our own attempts to ping the database server returned very low round trip times,
as shown in Figure 6-7 on page 417.

416 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-7 ping persian

Both PCs and the server were on the same network. We therefore concluded
that network availability and bandwidth was most likely not the cause of the
performance problem.

Hypothesis 2: WebSphere Application Server problems
In checking for problems with the WebSphere Application Server, we need to
check both the system resource consumption of the WebSphere Application
Server machine, and the WebSphere Application Server environment.

Figure 6-8 on page 418 shows the output of the nmon command. The system
running the WebSphere Application Server was not busy, and there were no
significant IO performance problems. Both the CPU utilization and disk
throughput were low.

 Chapter 6. Problem determination scenarios 417

Figure 6-8 nmon output

We then checked the WebSphere Application Server console for error
messages, as shown in Figure 6-9 on page 419. There were no errors that
pointed to any performance problems.

418 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-9 WebSphere Application Server console

Hypothesis 3: DB2 database server system problems
In our scenario, both WebSphere Application Server and DB2 server shared the
same machine. Since Figure 6-8 on page 418 shows the system operating
normally, we eliminated this hypothesis as the cause of the performance
problem.

Hypothesis 4: DB2 system problems
We adopted the following hypotheses hierarchy described in “DB2 system
resource constraints” on page 400 to validate the cause of the performance
problem:

� Connection problems
� Sorting problems
� Locking problems
� Buffer pool problems
� Cache size problems
� Miscellaneous problems

 Chapter 6. Problem determination scenarios 419

Connection problems

To determine whether connections were the cause of the problem, we listed both
of the following items:

� Database manager configuration, and database configuration parameters, as
shown in Figure 6-10 (edited to only show connection-related parameters)

� Database manager and database snapshots, as shown in Figure 6-11 on
page 421 (edited to show monitoring elements of interest).

Figure 6-10 Database configuration connection-oriented parameters

420 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-11 Snapshots to determine current connections

We concluded that connections were not the cause of the performance problem
for the following reasons:

� Figure 6-10 on page 420 shows the following:

– Max number of existing agents (MAXAGENTS) is 128.

– Max number of client connections (MAX_CONNECTIONS) is 128.

– Max number of concurrent coordinating agents (MAXCAGENTS) is 128.

– Max number of active applications (MAXAPPLS) for the tradedb database is
256.

� Figure 6-11 shows the following:

– The sum of (Remote connections to db manager + Local connections)
is 20, which is less than max_connections (128).

– The High water mark for agents registered (27) is less than max_agents
(128).

– The High water mark for agents waiting for a token is 0, which is less
than maxcagents (128).

– The High water mark for connections is 54, less than maxappls (256).

 Chapter 6. Problem determination scenarios 421

– The High water mark for coordinating agents is 25, less than
max_coordagents (128).

Sorting problems

To determine whether sort considerations were the cause of the problem, we
listed both of the following items:

� Database manager configuration parameters, and database manager
snapshot, as shown in Figure 6-12 (edited to only show sort-related
parameters

� Database configuration parameters, and database snapshot, as shown in
Figure 6-13 (edited to show monitoring elements of interest).

Figure 6-12 Instance-level sort parameters and values

Figure 6-13 Database-level sort parameters and values

422 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

We concluded that sorts were not the cause of the performance problem for the
following reasons:

� Figure 6-12 on page 422 shows the following:

– Private Sort heap high water mark (4518) is less than sheapthres
(9000).

– Post threshold sorts is 0.

– The difference between Piped sorts requested and Piped sorts
accepted is 0.

� Figure 6-13 on page 422 shows the following:

– Shared Sort heap high water mark is 0.

– Sort overflows is 0.

Locking problems

To determine whether locking considerations were the cause of the problem, we
listed a database snapshot as shown in Figure 6-14 on page 424.

Note: Since this was a pure OLTP environment, we also verified that the
INTRA_PARALLEL database manager configuration parameter was set to NO,
using the following command:

db2 get dbm cfg | grep -i intra

 Chapter 6. Problem determination scenarios 423

Figure 6-14 Database snapshot for locks

Figure 6-14 highlights the following areas of potential performance problems:

� There is a significant number of Lock waits (1223).

� Agents currently waiting on locks (8) is high for the number of
Applications connected currently (44).

� The average time waiting on locks (Time database waited on locks (ms) /
Lock waits) is (451510/1223) or 369 seconds, which is very high.

The lack of Lock Timeouts (Lock Timeouts 0), and lock escalations (Lock
escalations 0) appears to be a good sign, except that the average time waiting
for locks is too high. We would have expected to see at least a few lock timeouts
for such a large wait time.

Since the recommendation for the database configuration parameter
LOCKTIMEOUT for OLTP environments is usually less than 15 seconds, we
decided to check the value of LOCKTIMEOUT, as shown in Figure 6-15.

Figure 6-15 Current value of LOCKTIMEOUT

A LOCKTIMEOUT value of -1 means that locks requests will never time out.
Applications trying to acquire locks will wait indefinitely for the lock to be released
by the holding application, which in our scenario does not occur. In the real
world, applications with “infrequent commits” do relinquish locks, which enable

424 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

the waiting applications to continue processing. However, the manifestation of
such problems for applications is long waits and erratic response times.

Root cause of the problem
Two factors contributed to the problem of extended waits:

1. Some applications did not commit frequently, thereby resulting in locks being
held for extended periods of time.

2. The default LOCKTIMEOUT value of -1 caused applications requesting locks
held by other applications to wait indefinitely.

Apply best practices
Two changes have to be made to resolve the problem as follows:

1. Change the LOCKTIMEOUT to a value between 10 and 15 seconds.

Having too small a value can result in spurious timeouts, thereby frustrating
users, while a very large value can cause extended waits that would also be
unacceptable to users.

Ongoing monitoring will help you to determine the appropriate value for your
environment.

2. Identify applications that execute in multi-user shared data environments that
hold large locks (table level) and commit infrequently, and encourage the
application developer to reduce the size and duration of locks held.

However, in some cases, business requirements may not permit this, in which
case, you should consider scheduling these applications during time periods
that result in the least amount of contention.

In real world environments, however, it is critical that both factors be addressed
to resolve the problem scenario modeled here.

Note: The default value of LOCKTIMEOUT is -1.

Note: We did not attempt to identify the application that was committing
infrequently in this scenario.

By not doing so, and just resolving the LOCKTIMEOUT issue by setting it to
an appropriate value, we merely deferred the “infrequent commits” problem
(namely, the certainty of another triggering event that users will be
experiencing a large number of timeouts in future).

 Chapter 6. Problem determination scenarios 425

6.3.2 Poor SQL performance due to missing indexes (OLTP)
The scenario described here is one of diagnosing a performance problem
caused by missing indexes.

Missing indexes may affect the choice of an optimal access path, and may result
in table scans and/or sorts resulting in poor SQL performance. The reasons for a
missing index may be due to an inadvertent dropping of the index, or an
ignorance of the application workload’s characteristics during the design phase,
which resulted in the indexes not being defined.

Description of the application
We used the DTW application described in Appendix B, “Workloads used in the
scenarios” on page 485, which is a slightly modified version of the industry
standard TPC-C OLTP benchmark.

We also created a custom query against the DTW tables that would result in a
suboptimal access path because of the absence of an index. This query is shown
in Figure 6-16, and it identifies the customer with the maximum discount in each
city.

Figure 6-16 Custom query for missing index scenario

Environment configuration
We used a single pSeries Model 270 running the DB2 database; this workload
did not have WebSphere Application Server support.

Table 6-3 on page 427 and Figure 6-17 on page 427 highlight the details of the
environment.

426 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Table 6-3 Missing indexes scenario configuration

Figure 6-17 Missing indexes configuration environment

Monitor level settings
We used the following recommended settings for routine monitoring in an OLTP
environment, as shown in Figure 6-6 on page 415:

� Set monitor switches DFT_MON_BUFPOOL, DFT_MON_SORT, DFT_MON_TABLE,
DFT_MON_TIMESTAMP, DFT_MON_UOW, and HEALTH_MON to ON.

� Set monitor switches DFT_MON_LOCK and DFT_MON_STMT to OFF.
� Accept the DIAGLEVEL default setting (3).

Hardware configuration Software configuration

pSeries Model 270
2 CPUs
1 GB RAM
2 x 36 GB SCSI disks

AIX 5.1 ML03
DB2 V8.1 FP1

PC Windows 2000

 Chapter 6. Problem determination scenarios 427

Workload used
We used several DTW driver programs to perform a variety of queries, updates,
inserts, and deletes against the DTW database. This provided the background
OLTP workload, and we ran our custom query shown in Figure 6-16 on page 426
to create the performance problem.

Triggering event
Several user complaints about an application that was experiencing long
response times for a recently introduced application.

Hypotheses and validations
We postulated the following hypotheses as potential causes of the problem and
then attempted to validate each hypothesis in turn:

� Hypothesis 1: Network performance problems

� Hypothesis 2: DB2 database server system problems

� Hypothesis 3: DB2 system problems

� Hypothesis 4: DB2 application problems

Hypothesis 1: Network performance problems
Using the same approach described in “Hypothesis 1: Network performance
problems” on page 416, we determined that network availability and bandwidth
was most likely not the cause of the performance problem.

Hypothesis 2: DB2 database server system problems
Figure 6-18 on page 429 shows the output of the nmon command while the
complaints were being received about the poorly performing application.

428 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-18 System load while running application

We concluded that the DB2 system was not the cause of the performance
problem for the following reasons:

� While the system utilization is towards the upper end of the acceptable range
at 75%, there are still spare CPU cycles available.

� The workload is relatively evenly balanced across the two CPUs; therefore,
the problem is unlikely to be a runaway or looping application or other
process.

� The system has 266 MB of free memory and is not paging; therefore, memory
is not a problem.

� One disk (hdisk1) is relatively busier than the others, and it is worth
investigating whether the I/O load should be balanced across multiple disks.
However, the disk utilization of 42% is well within the recommended bounds,
so we can therefore conclude that the disk subsystem is not likely to be a
performance bottleneck.

Hypothesis 3: DB2 system problems
Using the same hypotheses hierarchy described in “DB2 system resource
constraints” on page 400, we validated the following in sequence:

� Connection problems
� Sorting problems
� Locking problems
� Buffer pool problems
� Cache size problems
� Miscellaneous problems

 Chapter 6. Problem determination scenarios 429

Connection problems

Using the same approach described in “Hypothesis 4: DB2 system problems” on
page 419, we determined that connection problems were not the cause of the
performance problem.

Sorting problems

Using the same approach described in “Hypothesis 4: DB2 system problems” on
page 419, we determined that sorting problems were not the cause of the
performance problem

Locking problems

Using the same approach described in “Hypothesis 4: DB2 system problems” on
page 419, we determined that locking problems were not the cause of the
performance problem.

Buffer pool problems

Figure 6-19 shows the snapshot data relevant to buffer pools for the DTW
database.

Figure 6-19 Buffer pool snapshot data

We concluded that the buffer pool was not the cause of the performance problem
since the hit ratios were well within acceptable limits, as follows:

� Overall buffer pool hit ratio is (1-((319+66)/(59043+3398)))*100%, which is
approximately 100%.

� Index buffer pool hit ratio is (1-(66/3398))*100%, which is about 98%.

Cache size problems

To determine whether catalog and package cache size considerations were the
cause of the problem, we listed the database configuration parameters and the
database snapshot, as shown in Figure 6-20 on page 431 and Figure 6-21 on
page 431, respectively (edited to show monitoring elements of interest).

430 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-20 Database package and catalog cache sizes

Figure 6-21 Package and catalog cache snapshot data

We concluded that there were no cache size problems, for the following reasons:

� Package cache hit ratio is (1-(17/1953))* 100%, which is 99%.

� Package cache overflows is 0.

� Package cache high water mark is 240010, which is less than the Package
cache size (PCKCACHESZ) (256*4*4 KB or 4 MB).

� Catalog cache hit ratio is (1-(14/10859)) * 100%, which is 99.8%.

� Catalog cache overflows is 0.

� Catalog cache high water mark (0) is less than Catalog cache size
(CATALOGCACHE_SZ).

Miscellaneous problems

Given our controlled environments, we chose not to monitor the various
miscellaneous constraints listed in “Miscellaneous constraints” on page 410. In
the real world however, these should be evaluated and eliminated as contributing
to poor performance.

 Chapter 6. Problem determination scenarios 431

Hypothesis 4: DB2 application problems
Having eliminated the network, the DB2 system, and the DB2 server as being the
potential cause of the performance problem, we turned our attention to the
application.

We needed to identify the errant application and SQL, and then analyze the SQL
in question.

To identify the application, we created an Event Monitor for connections and
statements, and activated it at the beginning of the monitoring interval by
changing its state to 1 as shown in Figure 6-22.

Figure 6-22 Creating the Event Monitor

We then had to wait for the next monitoring interval when users reran their
applications, in order to collect Event Monitor data. Once the applications
completed, we flushed and stopped the Event Monitors, as shown in Figure 6-23.

Figure 6-23 Flushing Event Monitor data to tables

The Event Monitor data is written to SQL tables, and we queried the contents of
the connection Event Monitor table to find the query using the most CPU cycles
(assuming this was the poorly performing application) as shown in Figure 6-24
on page 433. This also revealed that AGENT_ID 177 was reading a large
number (1820886) of rows.

432 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-24 Write to table Event Monitor data showing CPU usage and so on

Using the agent_id (177) of the long running query, we then queried the
statement Event Monitor table to obtain the SQL statement details, as shown in
Figure 6-25.

Figure 6-25 Write to table Event Monitor data showing SQL statement

We concluded that the SQL statement thus identified was problematic since a
large number of rows were being read, and CPU consumption was high.

We then checked to see if there were access path problems with this SQL
statement by running Visual Explain on it as shown in Figure 6-26 on page 434,
which showed that the query was performing table scans.

 Chapter 6. Problem determination scenarios 433

Figure 6-26 Visual Explain output

We then checked to see what indexes existed on the CUSTOMER table as
shown in Figure 6-27 on page 435, and when statistics were last collected on
them.

434 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-27 Indexes on the CUSTOMER table

While indexes exist, there are no indexes for the column C_CITY, which is the join
predicate of the SQL statement.

We also checked to see when statistics were last collected on the CUSTOMER
table, as shown in Figure 6-28.

Figure 6-28 Checking when runstats last ran on the customer table

Since statistics were current and indexes were not being used, we invoked the
Design Advisor for this query, as shown in Figure 6-29 on page 436, to determine
whether new indexes would improve the query performance.

 Chapter 6. Problem determination scenarios 435

Figure 6-29 Design Advisor recommendations

Root cause of the problem
The root cause of the poor performance of this application is missing indexes
that resulted in suboptimal access path.

Attention: If the statistics were found to be missing or out of date, then
runstats would have to be run, and the query EXPLAINed and re-executed to
determine the cause of the performance problem.

Another validation (not shown here) is the necessity to verify that the tables
involved in a query are well organized. Use the reorgchk utility to determine
this, and run reorg and runstats if the table is disorganized, before rerunning
the query.

436 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Apply best practices
Creating the indexes recommended by Design Advisor appears to be beneficial,
based on projections of a 40.88% improvement. You need to create the indexes
and measure actual performance gains.

Creating new indexes consumes disk space, and will negatively impact
applications performing inserts, updates, and deletes due to index maintenance.
Additionally, index contention may also affect performance.

6.3.3 Poor SQL performance due to unused MQTs (BI)
The scenario described here is one of diagnosing a problem of a query not using
a Materialized Query Table (MQT).

MQTs provide a powerful mechanism for achieving superior query performance
in a BI environment. They typically contain precomputed aggregates from one or
more tables and are generally maintained automatically by DB2. Whenever
possible, the DB2 optimizer will automatically rewrite a query accessing large
base tables to use an MQT instead in order to deliver superior performance.

Description of the application
We used the EBIZ banking application described in Appendix B.3, “EBIZ
database” on page 486 as an example of databases used in a BI environment.

Environment configuration
We used a single pSeries Model 650 8 CPU system to running the DB2
database; this workload did not have WebSphere Application Server support.

Table 6-4 and Figure 6-30 on page 438 highlight the details of the environment.

Table 6-4 Unused MQTs scenario configuration

Hardware configuration Software configuration

pSeries Model 650
8 CPUs
32 GB RAM
4 x 146 GB HDD disks

AIX 5.1 ML03
DB2 V8.1 FP1

PC Windows 2000

 Chapter 6. Problem determination scenarios 437

Figure 6-30 Unused MQTs configuration environment

Monitor level settings
We used the following recommended settings for routine monitoring in a BI
environment as shown in Figure 6-30:

� Set monitor switches DFT_MON_BUFPOOL, DFT_MON_SORT, DFT_MON_TABLE,
DFT_MON_TIMESTAMP, and HEALTH_MON to ON.

� Set monitor switches DFT_MON_LOCK, DFT_MON_STMT and DFT_MON_UOW to OFF.

� Accept the DIAGLEVEL default setting (3).

Workload used
The workload consisted of several BI SQL queries against the EBIZ database.

Triggering event
Several user complaints about very poor response times for a newly introduced
set of queries.

438 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Hypotheses and validations
We postulated the following hypotheses as potential causes of the problem, and
then attempted to validate each hypothesis in turn:

� Hypothesis 1: Network performance problems

� Hypothesis 2: DB2 database server system problems

� Hypothesis 3: DB2 system problems

� Hypothesis 4: DB2 application problems

Hypothesis 1: Network performance problems
Using the same approach described in “Hypothesis 1: Network performance
problems” on page 416, we determined that network availability and bandwidth
was most likely not the cause of the performance problem.

Hypothesis 2: DB2 database server system problems
Using the same approach described in “Hypothesis 2: DB2 database server
system problems” on page 428, we determined that system CPU, I/O, and
memory was not the cause of the performance problem.

Hypothesis 3: DB2 system problems
Using the same approach described in “Hypothesis 3: DB2 system problems” on
page 429, we concluded that connections, sorting, locking, buffer pool, and
cache sizes were not the cause of the performance problems.

Hypothesis 4: Application problem
Having eliminated the network, DB2 system and DB2 server as being the
potential cause of the performance problem, we turned our attention to the
application.

We needed to identify the errant application and SQL, and then analyze the SQL
in question. To identify the application, we created an Event Monitor for
connections and statements, and activated it at the beginning of the monitoring
interval by changing its state to 1, as shown in Figure 6-31 on page 440. We also
identified in which tables the Event Monitors would store their results.

 Chapter 6. Problem determination scenarios 439

Figure 6-31 Event monitors for unused MQT scenario

We then had to wait for the next monitoring interval when users reran their
applications in order to collect Event Monitor data.

We executed a db2 list application command to view the running
applications, as shown in Figure 6-32.

Figure 6-32 Applications running during unused MQT scenario

After the applications finished, we flushed and stopped the Event Monitors and
examined the Event Monitor connection data, as shown in Figure 6-33 on
page 441.

440 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-33 Connection Event Monitor output for unused MQT scenario

We noted that AGENT_ID 103 consumed a large amount of CPU and read a
large number of rows. We confirmed that this was the problem query by selecting
the data for agent_id 103 from the statement Event Monitor table, as shown in
Figure 6-34 on page 442.

 Chapter 6. Problem determination scenarios 441

Figure 6-34 Statement Event Monitor output for unused MQT scenario

We extracted the corresponding SQL statement from the statement Event
Monitor output, as shown in Figure 6-35 on page 443.

442 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-35 Statement Event Monitor data for unused MQT scenario - SQL

We then checked to see if there were access path problems with this SQL
statement by running Visual Explain on it as shown in Figure 6-36 on page 444,
which showed that the query was performing multiple table scans.

 Chapter 6. Problem determination scenarios 443

Figure 6-36 Visual Explain output for unused MQT scenario

We therefore looked at the table dba.cust_ast_view in more detail, and
concluded that was a view. Using Control Center, we obtained the view definition
as shown in Figure 6-37 on page 445.

444 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-37 Definition of cube_ast_view

We identified the underlying tables of the view as being the following:

� stars.loc
� stars.pgroup
� stars.trans
� stars.transitem
� stars.product

Given that we were in a BI workload environment, we investigated the view and
the underlying tables for dependencies, as shown in Figure 6-38 on page 446.

 Chapter 6. Problem determination scenarios 445

Figure 6-38 Identifying tables dependent on MQTs or Summary Tables

Having identified an MQT on cube_ast_view, we looked up its definition. From
the Control Center, we selected the MQT table cube_ast from the tables pane
and used the Generate DDL function to view the results shown in Figure 6-39.

Figure 6-39 DDL for the cube_ast MQT

A cursory examination shows that the cube_ast MQT has a predicate

country = ‘USA’

Note: The predicates btype = ‘S’ or dtype = ‘S’ limit the query results to
tables, depending on summary tables or MQTs.

446 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

that is more restrictive that the original query

“select * from dba.cube_ast_view”

Root cause of the problem
The root cause of the problem is that the query is unable to use the available
MQT, because the MQT has a more restrictive predicate defined on it than the
original query. The predicates in the MQT must be a superset of those specified
in the query in order for the DB2 optimizer to make use of the MQT via a query
rewrite.

For validation purposes, we modified the query as follows:

select * from dba.cube_ast_view where country = “USA”

We ran the query through Visual Explain and generated the output shown in
Figure 6-40, which shows the query accessing the cube_ast MQT.

Figure 6-40 Visual Explain for revised SQL

 Chapter 6. Problem determination scenarios 447

Apply best practices
Keep in mind that designing an MQT requires a thorough understanding of the
query workload, and the conditions under which the DB2 optimizer undertakes a
query rewrite for it.

While MQTs are powerful tools to achieve superior performance in BI
environments, they also have certain overheads such as disk space, locking
contention, logging overhead, and response time overheads with certain kinds of
refreshes. Refer to 3.3.3, “MQT/AST design considerations” on page 128 for
detailed information on MQTs.

6.4 Routine monitoring scenarios
As discussed in “Routine monitoring” on page 5, the objectives of this type of
monitoring are to collect information about the workload and stress on the
system during periods of normal and peak periods for capacity planning
purposes, as well as identifying potential performance problems in the future.

From a problem determination point of view, the objective is to detect
deteriorating trends of key performance drivers, and then perform exception
monitoring to pinpoint the problem and resolve it before it gets out of hand.

Here again, adopting a consistent problem determination methodology as
described in “Problem determination methodology” on page 7 will ensure speedy
resolution of performance problems. However, it should be noted that routine
monitoring alerts will enable you to bypass certain validations by virtue of the fact
that these alerts point to a specific problem area.

The following subsections cover the following problem determination scenarios:

1. Deteriorating space utilization conditions (BI)

2. Deteriorating buffer pool hit ratios (OLTP)

Note: This explain does show a table scan being performed, and needs to be
tuned to use indexes.

Important: Routine monitoring requires a history repository to determine
trends, and reporting mechanisms to alert potential problem conditions via
thresholds and alerts.

We did not have such a history repository available, and just asserted the
existence of a particular trend for our problem diagnosis purposes.

448 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

As in the case of exception events scenarios described in “Exception event
scenarios” on page 412, note the following points:

1. The workload and environments were artificially contrived to produce the
relevant problem condition for the problem diagnosis exercise; therefore,
certain settings can clearly been seen to be “inappropriate” in real world
environments.

2. The emphasis of these scenarios is on problem diagnosis, and not on
problem resolution per se. Best practices for problem resolution are
discussed briefly, but not applied to demonstrate the elimination of the
problem.

We have similarly organized the description of each routine monitoring scenario
as follows:

� Description of the application
� Environment configuration
� Monitor level settings
� Workload used
� Triggering event
� Hypotheses and validations
� Root cause of the problem
� Apply best practices

6.4.1 Deteriorating space utilization conditions (BI)
In this scenario, we investigate how an MDC table with poorly defined
dimensions can severely impact space utilization, as well as loading of data.
MDCs are primarily used in BI environments.

Description of the application
We used the EBIZ banking application described in Appendix B.3, “EBIZ
database” on page 486 as an example of databases used in a BI environment.

Environment configuration
We used a single pSeries Model 650 8 CPU system to run the BI database for
this scenario; this workload did not have WebSphere Application Server support.

Table 6-5 on page 450 and Figure 6-41 on page 450 highlight the details of this
environment.

 Chapter 6. Problem determination scenarios 449

Table 6-5 Deteriorating space utilization scenario configuration

Figure 6-41 Configuration for MDC scenario

Monitor level settings
We used the following recommended settings for routine monitoring in a BI
environment as shown in Figure 6-41:

� Set monitor switches DFT_MON_BUFPOOL, DFT_MON_SORT, DFT_MON_TABLE,
DFT_MON_TIMESTAMP, and HEALTH_MON to ON.

� Set monitor switches DFT_MON_LOCK, DFT_MON_STMT and DFT_MON_UOW to OFF.

� Accept the DIAGLEVEL default setting (3).

Hardware configuration Software configuration

pSeries Model 650
8 CPUs
32 GB RAM
4 x 146 GB HDD disks

AIX 5.1 ML03
DB2 V8.1 FP1

PC Windows 2000

450 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Since this scenario is about SMS and DMS table space utilization monitoring, we
assumed file system utilization (and number of free blocks) was collected via the
df command for UNIX1 as shown in Figure 6-42 and the db2 list table spaces
show details2 command in DB2 as shown in Figure 6-43 on page 452.

Figure 6-42 df command showing filesystem utilization

Attention: In addition to gathering snapshot information at appropriate
intervals, routine monitoring also involves gathering information about
changes in the number and size of files systems, containers, system CPU,
memory and I/O utilizations, database resources utilizations and efficiencies
such as buffer pool hit ratios, and the application workload itself.

This information should be stored in a repository for subsequent analysis.

1 For Windows environments, in Windows Explorer, right-click the volume and select Properties.
2 In a partitioned database environment, this command does not return all the tablespaces in the
database. To obtain a list of all the tablespaces, query SYSCAT.SYSTABLESPACES.

Note: Figure 6-42 displays utilization at the filesystem level. To map physical
disks to file systems, refer to “Mapping filesystems to physical disks” on
page 364.

 Chapter 6. Problem determination scenarios 451

Figure 6-43 Finding DMS tablespace high water marks

Workload used
The workload consisted of several BI SQL queries against the EBIZ database.

Triggering event
Analysis of tablespace utilization collected through routine monitoring indicated
that the DMS tablespace TBS_DATA was unexpectedly consuming disk space at
a rate that would soon require providing additional containers.

Since the growth rate exceeded anticipated growth rates, it merited further
investigation.

Hypotheses and validations
We needed to determine the database objects in this tablespace in order to
pinpoint the particular object causing the unexpected growth. Figure 6-44 on
page 453 indicated that there was only one table CUSTOMER_MDC in this table
space.

Note: The high water mark value is only applicable for DMS tablespaces (and
not SMS tablespaces), as shown in Figure 6-43.

452 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-44 Identifying table space usage in a table space

A lookup of SYSCAT.SYSTABLES confirmed that the table CUSTOMER_MDC is an
MDC table (indicated by Y in the CLUSTERED column).

Figure 6-45 Identifying an MDC table

Since we were aware of the space utilization issues of poorly chosen dimension
keys, we decided to compute the cell count for the dimensions of this table.

We identified the dimension columns of this table to be C_STATE and
C_DISCOUNT by using the Control Center, selecting the CUSTOMER_MDC
table, then selecting Generate SQL. The output is shown in Figure 6-46 on
page 454, and the number of rows in this table as shown in Figure 6-47 on
page 454.

Note: Had there been more than one table identified, we may have needed to
monitor the growth of relevant tables over time to identify the high growth
table.

 Chapter 6. Problem determination scenarios 453

Figure 6-46 Identifying dimension columns of CUSTOMER_MDC table

Figure 6-47 Number of rows in CUSTOMER_MDC table

We determined the cell count for the CUSTOMER_MDC table as shown in
Figure 6-48 on page 455, which indicated a cell count (590674) almost equal to

454 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

the number of rows in the table (600000). This would cause an extent to be used
to store a single row for each distinct two-column pair.

Figure 6-48 Output from cell count table

To verify that the chosen dimension columns had been poorly designed, we
computed the Rows per Cell (RpC) for these dimensions as shown in
Figure 6-49.

Figure 6-49 Query showing RpC count for candidate dimensions

The low number of rows in each cell confirms that C_STATE and C_DISCOUNT
are a poor choice for the dimension columns, since the size of each cell is at
least one block (extent). RpC indicates that only 1 to 3 rows per cell are being
stored in a block.

Root cause of the problem
The root cause of unexpected space utilization is a poor selection of dimension
columns for an MDC table, which resulted in many extents being created with
very few rows in each one.

Apply best practices
MDC table space utilization can be improved by changing the number of cells,
the size of a cell’s allocation unit (block = extent), or both. Specifically, you can:

 Chapter 6. Problem determination scenarios 455

� Change the extent size
� Change the page size
� Change the granularity of one or more dimensions
� Change the number candidate dimensions
� Try a different combination of dimensions

Note: Since each of these changes requires the table to be dropped and
recreated, great care must be exercised in the design of MDC tables to avoid
excessive space utilization or data load problems, in order to avoid these drastic
measures.

6.4.2 Deteriorating buffer pool hit ratios (OLTP)
In this scenario, we highlight the benefits of high buffer pool hit ratios, the point of
diminishing returns with buffer pool sizes, and the overall impact of buffer pool
paging on end user response times.

Hit ratios are computed as

Hit ratio = (1 - #physical reads/#logical reads)*100

High hit ratios (90%-95% for OLTP environments and 85% for BI environments)
are desirable for minimizing I/O and improving overall end user response times.

The buffer pool hit ratio can often be improved by increasing the size of the buffer
pools, but this depends upon many factors including the size of the tables and
indexes involved, sequential or random access characteristics of the application
workload, and the contention amongst tables and indexes sharing the same
buffer pool.

Description of the application
We used the Trade2 application described in Appendix B.4, “Trade2 database
and application” on page 487 as the OLTP environment.

Environment configuration
We used a single AIX pSeries Model 270 to run the DB2 database, and a single
IBM eServer xSeries® 330 to run WebSphere Application Server. A Windows
2000 PC used the akstress tool to drive the Trade2 application.

Table 6-6 on page 457 and Figure 6-50 on page 457 highlight the details of the
configuration.

456 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Table 6-6 Buffer pool hit ratio scenario configuration

Figure 6-50 Buffer pool hit ratio scenario configuration

Hardware configuration Software configuration

IBM eServer xSeries 330
2 CPUs 1.1 GHz each
4 GB memory
36 GB disk

Windows 2000 Fixpak 2
WebSphere Application Server 4.0.5

pSeries Model 270
2 CPUs
1GB RAM
2 x 36 GB SCSI disks

AIX 5.1 ML03
DB2 V8.1 FP1

PC Windows 2000
akstress tool

 Chapter 6. Problem determination scenarios 457

Monitor level settings
We used the following recommended settings for routine monitoring in an OLTP
environment, as shown in Figure 6-6 on page 415:

� Set monitor switches DFT_MON_BUFPOOL, DFT_MON_SORT, DFT_MON_TABLE,
DFT_MON_TIMESTAMP, DFT_MON_UOW, and HEALTH_MON to ON.

� Set monitor switches DFT_MON_LOCK and DFT_MON_STMT to OFF.

� Accept the DIAGLEVEL default setting (3).

As part of the routine monitoring process, information is gathered about buffer
pool efficiencies using snapshot, and then written to a history repository for
further analysis.

Since this scenario is about buffer pool hit ratios, buffer pool information shown
in Figure 6-51 was collected for each buffer pool and trends analyzed over time.

Figure 6-51 Buffer pool snapshot

Workload used
We used the Trade2 interactive trading application and the akstress tool to
simulate 20 concurrent users, each performing a login followed by several
queries and a logout. We drove this workload for 20 minutes.

Attention: We used the rmss command to adjust the apparent size of the
memory on the pSeries 270 system to demonstrate this particular scenario.
This command locks a specified amount of memory so that it cannot be used
by applications, and effectively simulates a system with less memory.

We configured the system with 632 MB by using the command:

rmss -c 632

This value was chosen after some trial and error to enable us to best
demonstrate the scenario.

458 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Triggering event
Analysis of buffer hit ratios collected through routine monitoring indicated that the
IBMDEFAULTBP buffer pool hit ratio had deteriorated suddenly, with the latest
measurements showing an alarming buffer pool hit ratio of 21%.

Hypotheses and validations
The reasons for the sudden drop in buffer pool hit ratios could be due to many
factors, including the following:

� A sudden increase in the number of applications assigned to the buffer pool.

We used the db2 list applications command to view the number of
connected users.

� A sudden growth in the size of the tables associated with the buffer pool. This
could be determined by comparison with historical data.

The default buffer pool, IBMDEFAULTBP, has a “bufferpoolid” of 1.

As shown in Figure 6-52 on page 460, we checked the number and names of
tablespaces using the default buffer pool. We ignored the system catalogue
and temporary tablespaces and identified the names of tables using the
“data” tablespace, USERSPACE1. We then looked at the row count of each
table; only one is shown. We observed that TRADEHOLDINGBEAN was
increasing in size compared to historical data.

� A change in the workload profile resulting in more random access to data.

This hypothesis is not easy to validate. It may be necessary to consult
application developers and application users to determine whether either
group have changed their work patterns.

The snapshot variable Unread prefetch pages, available in the BufferPool
Snapshot can provide evidence. This variable counts the number of pages
that the prefetcher read that were never used. An increase in this variable
compared to previous values indicates increased random access to data.

 Chapter 6. Problem determination scenarios 459

Figure 6-52 Determining sizes of tables using a specific buffer pool

Root cause of the problem
Investigations showed a combination small default buffer pool size in conjunction
with an increase in the number of applications being assigned to the buffer pool
causing contention, thereby negatively affecting the efficiency of the buffer pool.

Apply best practices
Tuning the buffer pool is a trial and error process.

We gradually increased the buffer pool in our contrived environment (from 32
pages to 64 pages to 128 pages to 256 pages to 512 pages to 1024 pages),
measuring at each point the buffer pool hit ratios, as well as the end-user
response times that we obtained from the akstress tool.

The results of these tests are shown in Figure 6-53 on page 461.

460 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-53 Buffer pool hit ratio & response time as function of buffer pool size

Figure 6-53 shows a hit ratio of 95% with a buffer pool size of 256 pages, with a
flattening out even as the number of buffers were increased. The point of
diminishing returns is somewhere between 256 pages and 512 pages, and you
could decrease the step increase in buffer pool size to get to a more accurate
point.

Therefore, increasing buffer pool hit ratios are not the only metric to determine
the efficiency of a buffer pool; we also need to take into account the impact of

Important: The more interesting metric is the end-user response time, which
shows deterioration occurring from the 128 buffers configuration level even as
buffer hit ratios continued to rise.

This is due to memory paging of the buffer pool, which effectively marks the
“real” point of diminishing returns somewhere between the 128 buffers and
256 buffers configuration.

 Chapter 6. Problem determination scenarios 461

increasing the size of the buffer pool on system paging and application response
times.

The “real” point of diminishing returns is the proper balance between buffer pool
hit ratios, application response times, and acceptable system paging.

6.5 Online/Realtime monitoring scenarios
As discussed in “Routine monitoring” on page 5, the objective of this type of
monitoring is to be on the lookout for specific events that may either identify a
specific problem, or portend problems in the near to immediate future, in order to
take prompt corrective action. “Near to immediate future” implies minutes, rather
than hours.

The key to this type of monitoring is that it involves looking for specific events in a
short interval of time (short history) that are known to degrade performance, and
having the option to take prompt corrective action to rectify the problem. In other
words, there probably needs to be a very short delay between information
collection and a corrective response. One example of such an event is the
occurrence of an excessive number of deadlocks in a short period of time, which
need to be addressed promptly to ensure that business objectives are not being
compromised.

Here again, adopting a consistent problem determination methodology as
described in “Problem determination methodology” on page 7 will ensure speedy
resolution of performance problems. However, it should be noted that
online/realtime monitoring is similar to routine monitoring, since its alerts will
enable you to bypass certain validations by virtue of the fact that these alerts
point to a specific problem area.

The Health Monitor and Health Center are the primary tools for online/realtime
monitoring in DB2.

In this section, we will cover a lock contention scenario in an OLTP environment.

As in the case of exception events scenarios described in “Exception event
scenarios” on page 412, note the following points:

1. The workload and environments were artificially contrived to produce the
relevant problem condition for the problem diagnosis exercise; therefore,

Note: The need to minimize the overhead of online/realtime monitoring is
critical, given that most problems manifest themselves at peak loads.

462 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

certain settings can clearly been seen to be “inappropriate” in real world
environments.

2. The emphasis of these scenarios is on problem diagnosis, and not on
problem resolution per se. Best practices for problem resolution are
discussed briefly, but not applied to demonstrate the elimination of the
problem.

We have similarly organized the description of the lock contention scenario as
follows:

� Description of the application
� Environment configuration
� Monitor level settings
� Workload used
� Triggering event
� Hypotheses and validations
� Root cause of the problem
� Apply best practices

6.5.1 Lock contention (OLTP)
Lock contention is a common and natural occurrence in any multiuser application
environment. However, to achieve better throughput and faster response times,
applications must be designed to minimize lock contention and the DBA must
ensure that the database configuration parameters LOCKLIST and MAXLOCKS
are configured appropriately.

In this scenario, we monitor application concurrency health indicators by setting
warning/alarm thresholds on lock escalation rate, lock list utilization, deadlock
rate, and percentage of applications waiting on locks. We then pinpoint the cause
of the problem.

Description of the application
We used the DTW application described in Appendix B.2, “DTW workload” on
page 486, which is a slightly modified version of the industry standard TPC-C
OLTP benchmark, and an uncommitted SQL statement to simulate contending
applications to demonstrate this scenario.

Figure 6-54 on page 464 shows a batch file consisting of an SQL UPDATE
statement that does not commit. This will result in all updated rows being locked
until a commit is issued.

 Chapter 6. Problem determination scenarios 463

Figure 6-54 Uncommitted SQL update statement

Environment configuration
We used the same system configuration shown in Table 6-3 on page 427 and
Figure 6-17 on page 427.

Monitor level settings
Since this is an OLTP environment, we used the following recommended
settings as shown in Figure 6-6 on page 415:

� Set monitor switches DFT_MON_BUFPOOL, DFT_MON_SORT, DFT_MON_TABLE,
DFT_MON_TIMESTAMP, DFT_MON_UOW, and HEALTH_MON to ON.

� Set monitor switches DFT_MON_LOCK and DFT_MON_STMT to OFF.

� Accept the DIAGLEVEL default setting (3).

We used the Health Center to configure Global Health Indicators on the DB2
instance PERS_DB2, as shown in Figure 6-55 on page 465, to provide an alert if
application concurrency-related health indicators exceeded certain thresholds,
as shown in Figure 6-56 on page 466.

Note: Our intention with the SQL update in Figure 6-54 was to simulate the
problem of applications performing “infrequent commits”, which can
undermine concurrency and result in erratic response times.

464 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-55 Configuring Health Monitor Global Health Indicators

 Chapter 6. Problem determination scenarios 465

Figure 6-56 Health Monitor - setting lock alerts

Workload used
We used several DTW driver programs to perform a variety of queries, updates,
inserts, and deletes against the DTW database. This provided the background
OLTP workload, and we ran our uncommitted SQL update statement shown in
Figure 6-54 on page 464 to create lock contention problems.

Triggering event
An alert from the Health Center that the number of applications waiting on locks
exceeded the configured threshold as shown in Figure 6-57 on page 467.

466 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-57 Health Monitor Alert

We also received an e-mail about the alert, as shown in Figure 6-58.

Figure 6-58 Alert e-mail

Hypotheses and validations
The Health Center alert enables us to focus directly on the locking
considerations, and we gathered snapshot information as shown in Figure 6-59
on page 468.

 Chapter 6. Problem determination scenarios 467

Figure 6-59 Lock information from database snapshot

There appear to be a number of problems besides the lock wait alert received as
follows:

� 91 Lock waits with an average lock wait time of (722758 / 91) = 7.9 seconds
� 23 Lock escalations, with 15 Exclusive lock escalations
� 16 Deadlocks detected
� 0 Lock timeouts
� 16 Internal rollbacks due to deadlock

The absence of lock timeouts caused us to check the LOCKTIMEOUT database
configuration parameter, as shown in Figure 6-60.

Figure 6-60 Current value of LOCKTIMEOUT

The -1 setting explains the lack of lock timeouts, but it does not explain the
reason for the lock escalations and deadlocks.

We issued a db2 list applications command to review current applications, as
shown in Figure 6-61 on page 469.

468 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Figure 6-61 Applications running

In DB2 V8.1, snapshot data is written to system tables that may be accessed via
get snapshot commands, or using queries against the tables, as shown in
Figure 6-62.

Figure 6-62 Additional lock information from database snapshot

We then examined the db2diag.log and db2inst1.nfy files for additional
information. The db2inst1.nfy file provided the most useful information, as shown
in Figure 6-63 on page 470.

 Chapter 6. Problem determination scenarios 469

Figure 6-63 db2inst1.nfy file

Lock escalations occur when either the MAXLOCKS or LOCKLIST limits are
exceeded. A large number of concurrent applications that do not commit
frequently when combined with under configured MAXLOCKS or LOCKLIST can
provoke lock escalations.

We determined the LOCKLIST and MAXLOCKS values by issuing the db2 get
db cfg for dtw command, as shown in Figure 6-64.

Figure 6-64 Current values of MAXLOCKS and LOCKLIST

We attempted to determine which specific limit triggered lock escalation, that is,
MAXLOCKS or LOCKLIST.

The current number of locks as listed in the db2inst1.nfy file in Figure 6-63 is
13832. For the sake of the following discussion, let us assume that this was the
highest value recorded for all the lock escalations recorded in the db2inst1.nfy
file.

We know that in 32 bit DB2, the size of lock structures is 72 bytes for the first lock
and 36 bytes for subsequent locks. If we assume a pessimistic average of 60
bytes/lock, then the space required is 60*13832 or 829920 bytes. The size of the
locklist is (250 * 4 KB) or 1000KBytes, and this seems to indicate that LOCKLIST
was not the cause of the escalation.

It is therefore likely that a single application is exceeding the MAXLOCKS limit,
which is 80% or 819200 bytes.

Important: Snapshot does not provide a usable high water mark for lock list
utilization. However, you can determine the high water mark by using the
UNIX command db2mtrk -v -d -w or by using Memory Visualizer. The
db2mtrk command exists under Windows, but does not provide Lock Manager
high water mark information.

470 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Root cause of the problem
It is most likely that lock escalation is being caused by a single application
exceeding the MAXLOCKS limit of 80%, but we cannot be definitive about it.

The most likely root cause of the lock escalations is that an application is trying to
obtain more than MAXLOCKS % of the lock list.

Much more detailed analysis needs to be performed to determine which
application is exceeding the MAXLOCKS limit, including creating Event Monitors,
setting diaglevel to 4, and setting the statement and lock monitor switches.

Apply best practices
It is normally appropriate to increase the MAXLOCKS and LOCKLIST values
when lock escalations occur, but in this case, MAXLOCKS is already quite high
as compared to the recommendation of 20 to 30% for OLTP environments.

The recommendation here is for the DBA to increase the LOCKLIST value to
solve the immediate problem of lock escalations, and then begin a more detailed
investigation of errant application programs that are either performing infrequent
commits, or updating/inserting/deleting large numbers of rows in a single SQL
statement.

Note: Detecting the applications involved in deadlocks requires exception
monitoring such as setting the lock monitor switches and requesting deadlock
level monitoring. Given the large number of lock escalations, it seems
reasonable to assume that eliminating lock escalations could well resolve the
deadlock problem as well. Should that not happen, then exception monitoring
for deadlocks should be triggered.

 Chapter 6. Problem determination scenarios 471

472 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Appendix A. DB2 UDB ESE Version 8
performance enhancements

In this appendix we briefly highlight new performance enhancements available in
DB2 UDB ESE Version 8, and the latest performance enhancements in DB2
UDB Version 8.1.4.

A

© Copyright IBM Corp. 2004. All rights reserved. 473

A.1 Introduction
DB2 UDB Version 8 provides major enhancements in availability, manageability,
and performance to support the most demanding of OLTP, BI, and mixed
workload environments.

In this appendix, we highlight the main performance enhancements in DB2 UDB
ESE Version 8 by categorizing them as follows:

� Application-related performance enhancements

� System-related performance enhancements

In the following sections we briefly describe these, as well as the latest
performance enhancements in DB2 UDB Version 8.1.4.

Refer to IBM documentation for more detailed information on these
enhancements, with particular attention to DB2 UDB Administration Guide:
Performance, SC09-4821.

A.2 Application-related performance enhancements
These include performance enhancements that primarily impact the application
design process under the control of application developers.

We describe these subjects:

� Multidimensional clustering (MDCs)

� Materialized Query Table (MQT) enhancements

� Compression of NULLs and DEFAULT

� LOAD enhancements

A.2.1 Multidimensional clustering
Multidimensional clustering enables a table to be clustered on more than one key
(or dimension) simultaneously. DB2 maintains the physical order of data in pages
in key order during inserts and deletes using clustering indexes. DB2 also groups
pages with the same dimension values into extents.

An MDC table maintains its clustering over all dimensions automatically, and
therefore eliminates the need to reorganize the table to restore physical data
order. MDCs are indexed using block indexes rather than RID indexes.

474 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

MDCs can significantly improve the performance of range queries that have
predicates containing one or more keys in the clustering indexes. The DB2
optimizer can apply additional strategies based on the efficiency of the block
indexes. In addition, clustering of the data means that only a part of the table
needs to be accessed, and this tends to result in more efficient prefetching.

Multidimensional clustering is primarily intended for BI environments, but can
also provide performance improvements in OLTP environments.

A.2.2 MQT enhancements
A materialized query table (MQT) is a table whose definition is based on the
result of a query, and whose data is derived from data in the tables on which the
MQT is based.

Prior to DB2 UDB Version 8, DB2 supported summary tables (automatic
summary tables, or ASTs). ASTs are a special type of MQT.

Several features of MQTs improve performance:

� The DB2 optimizer can identify SQL queries that can be satisfied by existing
MQTs (ASTs in DB2 UDB Version 7), and rewrite the query to use the MQT
instead of the base tables.

� MQTs can now be defined on nicknames, allowing remote data to be cached
on the local system. Routing a query to an MQT when all criteria for matching
and routing are satisfied results in significant performance improvements as
compared to accessing the data remotely.

� MQTs can be “incrementally refreshed”. In this case, a staging table is
associated with the MQT. Inserts, deletes and updates to the underlying base
tables are immediately reflected in the staging tables. The MQT is refreshed
with a REFRESH TABLE statement. The staging table is pruned when the refresh
is complete.

� DB2 UDB Version V8 also supports the concept of a “user maintained” MQT.

A.2.3 Compression of NULLS and DEFAULT
This is a table property that reduces disk space usage and can consequently
increase the performance of large table scans. You can now save disk space for
tables that will have many NULLs and SYSTEM DEFAULT values.

Specifying the new options VALUE COMPRESSION and COMPRESS SYSTEM
DEFAULT in the CREATE TABLE statement allows null and system default
values to be compressed using a new row format.

 Appendix A. DB2 UDB ESE Version 8 performance enhancements 475

A.2.4 Load enhancements
This is really more of an availability enhancement. During table loads, the
tablespace containing the table is no longer locked, thus allowing users full
access to all other tables in the tablespace. If the load is appending data to the
table, users have read access to the existing data in the table and to any
associated MQTs as well.

A.3 System-related performance enhancements
These include performance enhancements that primarily impact the runtime
system performance management activity under the control of system
administrators and the DBA.

The following performance enhancements will be described briefly:

� Prefetching enhancements
� Faster page cleaners
� Connection concentrator
� Type-2 indexes
� Stored procedures and UDFs thread-based model
� DMS container enhancements
� RUNSTATS enhancements
� Logging enhancements
� Manageability enhancements

A.3.1 Prefetching enhancements
DB2 UDB Version 8 introduces the concept of block-based buffer pools, which is
primarily aimed at improving the performance of prefetching by enabling
contiguous pages on disk to be brought into contiguous areas of memory in the
buffer pool.

A block-based buffer pool comprises a page area and a block area. The block
area consists of blocks where each block contains a number of sequential
database pages specified by the BLOCKSIZE parameter of the CREATE or ALTER
BUFFERPOOL command.

By default, contiguous pages on disk do not necessarily end up in contiguous
pages in the buffer pool. By creating and using block-based buffer pools,
sequential database pages will be transferred to a block in the block area of the
buffer pool. The prefetch mechanism will read multiple pages into the block area
using a single I/O.

476 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Reducing the number of I/Os will improve performance of workloads that perform
a great deal of prefetching.

A.3.2 Faster page cleaners
Asynchronous page cleaners write modified buffer pool pages to disk to ensure
that there is sufficient free pages in the buffer pool for pages to be read into
memory. Configuring the appropriate number of page cleaners has a significant
impact on write-intensive databases.

In DB2 UDB Version 8 on AIX systems, the page cleaners use the operating
system’s asynchronous I/O feature. This reduces the number of page cleaner
processes required and improves performance.

A.3.3 Connection concentrator
The connection concentrator mechanism is designed to allow many transient
connections (such as those from Internet applications) to share a logical
coordinating agent. It does this by retaining connection agent processes in a pool
after a client connection closes. These agent processes (called logical agents)
are managed by the coordinating agent, and are reused for subsequent client
connections. This results in fewer processes, fewer context switches, and
reduced memory usage.

The mechanism is enabled by setting MAX_CONNECTIONS greater than
MAX_COORDAGENTS.

A.3.4 Type 2 indexes
Type 2 indexes improve performance by eliminating most next-key locking. This
is achieved by marking keys as “deleted” rather than actually deleting them.
Doing so reduces I/O and improves performance. The deleted keys are
physically deleted during periods of low system activity.

Online table reorganization requires Type 2 indexes. Earlier version indexes (now
called Type 1 indexes) can be migrated to Type 2 by using the REORG INDEXES
command.

Note: AIX’s asynchronous I/O feature must be enabled and configured in
order for DB2 to take advantage of this performance enhancement.

 Appendix A. DB2 UDB ESE Version 8 performance enhancements 477

A.3.5 Stored procedures and UDFs thread-based model
In DB2 UDB Version 8, stored procedures, UDFs and methods are implemented
using a thread-based model.

Routines that are defined as thread safe run in a single fenced-mode process.
There is one process for Java routines and a separate process for non-Java
functions. This reduces context switching and also allows resource sharing of the
JVM.

This enhancement results in significant performance gains in environments
where a large number of routines run concurrently.

A.3.6 DMS container enhancements
In DB2 UDB Version 8, DMS table spaces provide the following capabilities:

� Drop a container from the tablespace.

� Reduce the size of an existing container.

� Add a new container to the tablespace and control whether or not to
rebalance.

A.3.7 RUNSTATS enhancements
The RUNSTATS command has been enhanced to improve the performance of
statistics collection and provide additional options such as the SAMPLED option
in the DETAILED clause. These include control of distribution limits, faster
detailed statistics, and accepting lists of indexes and columns as command
parameters.

A.3.8 Logging enhancements
In DB2 UDB Version 8, dual logging is provided on all platforms supported by
DB2. The maximum amount of log space that can be defined has increased from
32 GB to 256 GB.

DB2 UDB Version 8 allows an active unit of work to span both active and archive
logs. This support for “infinite active logs” can be used to support environments

Note: In earlier versions of DB2, a separate JVM was created for each routine.

Note: The default when adding a container to a DMS tablespace is for a
rebalance to occur. This can adversely affect system performance.

478 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

with large jobs that require more log space than you would normally allocate to
the primary logs.

A.3.9 Manageability enhancements
While these are not directly performance enhancements, they provide flexibility in
managing performance of a DB2 environment.

The include the following:

� Online configurable parameters

A significant number of database manager and database configuration
parameters can now be altered online without disconnecting users from the
database. Current values, as well as the value to be used on next start, can
be viewed using the SHOW DETAILS option to the GET DATABASE and GET
DATABASE MANAGER CONFIGURATION commands.

� Online buffer pool changes

In addition to various online configurable manager and database
configuration parameters, buffer pools can now be created, altered, and
dropped, without stopping the database.

� Configuration Advisor and AUTOCONFIGURE command

A Configuration Advisor Wizard and an autoconfigure command are
provided to help tune key DB2 database manager and database configuration
parameters to the unique requirements of your environment. The suggested
configuration parameters may be set immediately, or you can have the
wizard/command create a script of suggested parameter settings for review
and later execution.

� Health Monitor and Health Center

These two new features help monitor the health of the DB2 system. DB2 also
provides a set of health indicators to evaluate specific aspects of database
manager or database performance.

� Memory Visualizer

Memory Visualizer is new GUI interface for uncovering and fixing
memory-related problems of an instance. Memory Visualizer may be invoked
from Health Center recommendations, or independently, as its own
monitoring tool from the Control Center.

 Appendix A. DB2 UDB ESE Version 8 performance enhancements 479

A.4 DB2 UDB Version 8.1.4
Fixpak 4 became available November 2003, and it supports a number of
performance enhancements, including the following:

� Backup compression
� Direct I/O support on AIX
� Searched statements against fullselects
� Result set retrieval from SQL data-change operations
� Range-clustered tables
� Asymmetric index splitting
� Temporary tables in SMS
� Page cleaning enhancements
� Monitoring network time
� Lock deferral
� UNION ALL performance optimization
� Trusted stored procedure with embedded SQL
� Buffer pool memory allocation
� Improved concurrency through lock deferral
� Table append performance improvements
� Improved sort performance

Most of these enhancements do not require any user action to benefit from the
performance gains, and we will only briefly describe those that need the user to
take some action to achieve performance benefit:

A.4.1 Backup compression
DB2 UDB Version 8.1.4 now provides a backup compression technique that will
allow database administrators to follow a robust recovery policy while minimizing
the number of disks and tapes that must be dedicated to database backups.

While this is categorized as a manageability enhancement, the reduction in the
size of the backup image can reduce I/Os and improve the performance of
backup and restore.

A.4.2 Range-clustered tables
Range-clustered tables (RCT) provide fast, direct access to data.

An RCT is a table layout scheme where each record in the table has a
predetermined offset from the logical start of the table. An algorithm is used to
equate the value of the key for the record with the location of a specific row within
a table. The basic algorithm is fairly simple. In its most basic form (using a single
column instead of two or more columns to make up the key), the algorithm maps

480 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

a sequence number to a logical row number. The algorithm also uses the
record's key to determine the logical page number and slot number. This process
provides exceptionally fast access to records; that is, to specific rows in the table.
Using the key, the exact logical location of the record on disk can be found using
linear interpolation. The algorithm is more complex when multiple columns are
used to create the key.

The algorithm does not involve hashing because hashing does not preserve
key-value ordering. Preserving key-value ordering is essential because it
eliminates the need to reorganize the table data over time.

The advantages of an RCT include the following:

� Direct access through a range-clustered table key-to-RID mapping function.

� Less maintenance since a secondary structure such as a B+ tree does not
need to be updated for every INSERT, UPDATE, or DELETE.

� Less logging is done for range-clustered tables when compared to a similarly
sized regular table and associated B+ tree index.

� Less locking since an RCT avoids the redundancy of key and RID locking
during searched updates, searched deletes, and inserts. Using an RCT in this
way might reduce the number of locks and increase concurrency.

� Less buffer pool memory is required since there is no additional memory
required to store a secondary structure.

A.4.3 Direct I/O support on AIX
Direct I/O is an alternative caching policy that bypasses the default file system
buffer caching. Direct I/O reduces CPU utilization for file reads and writes by
eliminating a data copy from the cache to the user buffer. It also avoids diluting
the effectiveness of caching of other files in the case of a poor cache hit ratio.

DB2 UDB Version 8.1.4 provides direct I/O support on the AIX platform. This new
support is for all SMS tablespace containers with the exception of Long
Tablespaces and temporary tablespaces. The DB2_DIRECT_IO registry variable
must be set to enable this function.

A.4.4 Asymmetric index splitting
In Version 8.1.4, the CREATE INDEX statement has been enhanced to provide
greater control over the way index pages are split. The way in which the index

Note: On the Windows platform, direct I/O support is already available for all
SMS and DMS containers with the DB2NTNOCACHE registry variable.

 Appendix A. DB2 UDB ESE Version 8 performance enhancements 481

pages are split can have a direct impact on the amount of space used by the
index for any given table. The default 50/50 split is most effective for random table
insertion patterns. The new clauses on the CREATE INDEX statement allow the
index split method to be configured to match more defined insertion patterns via
the PAGE SPLIT SYMMETRIC (default), PAGE SPLIT HIGH and PAGE SPLIT LOW
clauses.

A.4.5 Buffer pool memory allocation
Starting in Version 8.1.4, the size for buffer pool memory allocations can be set
using the DB2_ALLOCATION_SIZE registry variable. Setting this variable to a higher
value results in fewer allocations needed to reach the desired amount of memory
allocated to a buffer pool. The potential cost of setting a higher value for this
registry variable is that memory can be wasted if the buffer pool is altered by a
non-multiple of the allocation size. For example, if the value for
DB2_ALLOCATION_SIZE is 8 MB and a buffer pool is reduced by 4 MB, this 4 MB will
be wasted because an entire 8 MB segment cannot be freed.

A.4.6 Page cleaning enhancements
An alternative method of configuring the page cleaning system is supported,
which differs from the default behavior in that page cleaners behave more
proactively in choosing which dirty pages get written out at any given point in
time. This new method of page cleaning differs from the default page cleaning in
two major ways:

1. Page cleaners are not triggered by the chngpgs_thresh database manager
configuration parameter.

2. Page cleaners are not triggered by LSN gap triggers issued by the logger.

To use this new method of cleaning, the DB2_USE_ALTERNATE_PAGE_CLEANING
registry variable must be set to ON. When this variable is set to ON, DB2 uses a
proactive method of page cleaning, writing changed pages to disk, keeping
ahead of LSN gap, and proactively finding victims. Doing this allows the page
cleaners to better utilize available disk I/O bandwidth.

A.4.7 Lock deferral
To improve concurrency, DB2 now permits the deferral of row locks of CS or RS
isolation scans in some situations until a record is known to satisfy the predicates
of a query. By default, when row-locking is performed during a table or index
scan, DB2 locks each row that is scanned before determining whether the row
qualifies for the query. To improve concurrency of scans, it may be possible to
defer row locking until after it is determined that a row qualifies for a query.

482 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

To take advantage of this feature, enable the DB2_EVALUNCOMMITTED registry
variable. With this variable enabled, predicate evaluation can occur on
uncommitted data, which means that a row may not satisfy the query whereas if
the evaluation occurred against the actual committed data, the row would satisfy
the query. Additionally, uncommitted deleted rows are skipped during table
scans. DB2 will skip deleted keys in type-2 index scans if the DB2_SKIPDELETED
registry variable is enabled.

These registry variable settings apply at compile time for dynamic SQL and at
bind time for static SQL. This means that even if the registry variable is enabled
at runtime, the lock avoidance strategy is not employed unless
DB2_EVALUNCOMMITTED was enabled at bind time. If the registry variable is enabled
at bind time but not enabled at runtime, the lock avoidance strategy is still in
effect. For static SQL, if a package is rebound, the registry variable setting at
bind time is the setting that applies. An implicit rebind of static SQL will use the
current setting of the DB2_EVALUNCOMMITTED.

A.4.8 Improved sort performance
Performance of sort operations, particularly small sorts and sorts running on
Windows platforms, has been enhanced. These performance improvements are
realized by minimizing the creation and deletion of temporary files used during
sort operations. Temporary tables in SMS tablespaces will not be deleted by
default once they are no longer needed. Instead, files associated with temporary
tables that are larger than one extent in size will be truncated to one extent.

You can increase this amount by specifying a larger value for the
DB2_SMS_TRUNC_TABLE_THRESH registry variable. You might want to increase this
value if your workload repeatedly uses large SMS temporary tables and you can
afford to leave space allocated between uses.

This feature will benefit users whose workload involves dealing with many small
temporary tables on smaller systems such as Windows NT where the file system
calls are relatively expensive, and users whose disk storage is distributed,
requiring network messages to complete file system operations.

Note: You can turn off this feature by specifying a value of 0 (zero) for the
DB2_SMS_TRUNC_TABLE_THRESH registry variable. You might want to do this if
your system has restrictive space limitations and you are experiencing
repeated out of disk errors for SMS temporary tablespaces.

If this variable is set to -1, then the file is not be truncated at all and the file will
be allowed to grow indefinitely, restricted only by system resources.

 Appendix A. DB2 UDB ESE Version 8 performance enhancements 483

The first connection to the database deletes any previously allocated files. If you
want to clear out existing temporary tables, you should drop all database
connections and reconnect, or deactivate the database and reactivate it.

If you want to ensure that space for temporary tables stays allocated, use the
ACTIVATE DATABASE command to start the database. This will avoid the repeated
cost of startup on the first connect to the database.

484 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Appendix B. Workloads used in the
scenarios

In this appendix we describe the workloads, scripts, and configurations used in
the problem determination scenarios.

B

© Copyright IBM Corp. 2004. All rights reserved. 485

B.1 Introduction
The three main applications we used in our scenarios were the following:

� DTW workload

� EBIZ database

� Trade 2 application

We also used the WebSphere Performance Tool (WPT) which includes akstress,
which we used to drive our workload.

These are briefly described here.

B.2 DTW workload
The DTW workload is a multi-user OLTP workload simulating an order entry
system. It models a warehouse order entry system. The workload tool, called
drvdtw, is built from C code and stored procedures. It generates OLTP
transactions against the database from a specified number of clients. The
transaction mix includes selects, inserts, and updates. The tool takes a number
of command options that control its behavior.

B.3 EBIZ database
The EBIZ database is part of the EZMart application, which is a data
warehousing solution for small-to-medium banks. The EZMart application is
based on the EBIZ database. The database stores detailed information about
customers: their accounts and transactions, as well as branch, product, and time
information.

For the purposes of the performance scenarios in this redbook, we used a subset
of the tables for various BI like queries.

The CUSTOMER table contained 600000 rows.

486 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

B.4 Trade2 database and application
The Trade 2 benchmark, also called the WebSphere Performance Benchmark
Sample, has been developed by IBM and is publicly available. This application
models an online brokerage firm providing Web-based services such as login,
buy, sell, get quote, and more. Figure 6-65 shows the various application
components and model-view-controller topology.

Figure 6-65 Trade 2 application

The Trade 2 application is a collection of Java™ classes, Java Servlets, Java
Server Pages and Enterprise Java Beans (EJBs) that service requests made by
registered users. This application runs as a single Java process that is managed
by WebSphere Application Server.

This workload exercises the entire solution stack, which consists of the
WebSphere Application Server, JVM, and the Just-In-Time (JIT) compiler, the
HTTP server, the DB2 Database Server and the DB2 client, the AIX operating
system, and the system hardware. The database contains approximately 500
registered users and 500 stocks.

Further details about this application, including sample code, can be obtained
from:

http://www.ibm.com/software/webservers/appserv/wpbs_download.html

EJB
Persistence

Trade
Database

Trade
servlets
Trade

servlets
Trade

servlets
Trade

servlets
Trade

servlets

Trade
servlets
Trade

servlets
Trade

servlets
Trade

servlets
Trade
JSPs

HTTP
Client EJ

B
Ac

ce
ss

Be
an

s

Tr
ad

e
Se

ss
io

n
B

ea
ns

Profile
CMP

Holding
CMP

Account
CMP

Register
CMP

Quote
CMP

Session Entity
Trade EJBs

 Appendix B. Workloads used in the scenarios 487

http://www.ibm.com/software/webservers/appserv/wpbs_download.html

B.5 WebSphere Performance Tools (WPT)
WPT (formerly AKtools) is a set of applications allowing a user to test a Web
server, a Web site, and/or a Web application.

Version 1.9 of WPT consists of two applications:

� akstress is a high-performance, simple, threaded HTTP engine which is
capable of simulating hundreds or even thousands of HTTP clients, using a
highly configurable set of directives in a human readable and easily modified
configuration file.

� akrecord is a simple eavesdropping proxy that will record a user's session
against a Web server for later playback in akstress.

When the two applications are combined, it becomes very easy to quickly build
an akstress configuration, which, with minor tuning, allows a user to evaluate the
usability of a server, site, or Web application.

akstress is built on the code from several other internal IBM stress test tools.
Those tools have been used for the last several years for things like HTTP/1.1
verification testing, large Web site stress analysis, HTTP Server SVT testing, and
Web server unit testing efforts.

The following is a list of some of the available functions in this tool:

� Fully configurable HTTP headers

� SSL support

� Support for HTTP/1.1 functions, including persistent connections and
chunked-transfer encoding

� Built-in cookie cache (for session testing)

� Result verification

� Full logging

� Overall and request-level statistics

� Simple to use, no requirement for third party interpreters, and so on

� Socks support for recording and replay

Attention: This product is currently available as an IBM internal use only tool.

488 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Further details can be obtained from:
http://www.alphaworks.ibm.com/tech/wptools

Attention: It is important to note that WPT is not a replacement for some of
the high-end Web stress tools. It was created to be either a “quick and dirty”
testing tool, or used in environments where the cost of purchasing of high-end
tools is prohibitive.

 Appendix B. Workloads used in the scenarios 489

http://www.alphaworks.ibm.com/tech/wptools

490 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 493. Note that some of the documents referenced here may be available
in softcopy only.

� DB2 UDB Performance Expert for Multiplatforms - A Usage Guide,
SG24-6436

� Database Performance Tuning on AIX, SG24-5511

� DB2 UDB V7.1 Performance Tuning Guide, SG24-6012

� The POWER4 Processor Introduction and Tuning Guide, SG24-7041

� DB2 UDB/WebSphere Performance Tuning Guide, SG24-6417

� IBM ESS and IBM DB2 UDB Working Together, SG24-6262

� DB2 UDB’s High Function Business Intelligence in e-business, SG24-6546

� DB2 UDB Exploitation of the Windows Environment, SG24-6893

� Scaling DB2 UDB on Windows Server 2003, SG24-7019

� DB2 Evaluation Guide for Linux and Windows, TIPS-0142

Other publications
These publications are also relevant as further information sources:

� DB2 UDB What's New Version 8, SC09-4848

� DB2 UDB Administration Guide: Planning, SC09-4822

� DB2 UDB Administration Guide: Implementation, SC09-4820

� DB2 UDB Administration Guide: Performance, SC09-4821

� DB2 UDB SQL Reference Volume 1, SC09-4844

� DB2 UDB SQL Reference Volume 2, SC09-4845

© Copyright IBM Corp. 2004. All rights reserved. 491

� Date, C. J., An Introduction to Database Systems, Eighth Edition, Pearson
Addison Wesley Publishing Co., July 2003, 0-321-197844-4

� IBM Education, “C45 DB2 UDB V8 Performance Tuning and Monitoring
Workshop”

� IBM Education, “CF41 DB2 UDB Advanced Administration Workshop”

� “DB2 UDB Internals for Administrators”, M. Huras, IDUG Conference
Proceedings, May 2003

� “DB2 V8 for Linux, Unix and Windows Performance and Tuning”, Christopher
Tsounis, IDUG Conference Proceedings, May 2003

� “Materialized Query Tables”, W. O’Connell, IDUG Conference Proceedings,
May 2003

� “New Data Clustering Techniques for Performance: Multidimensional
Clustering”, L. Cranston, IDUG Conference Proceedings, May 2003

� Gunning, P. K., DB2 UDB V8 Handbook for Windows and UNIX/Linux,
Prentice Hall PTR, August 2003, ISBN 0-130-66111-2

� “Boosting Query Performance: Multidimensional Clustering”, Bishwaranjan
Bhattacharjee, Leslie Cranston, Tim Malkemus, Sriram Padmanabhan, Q2,
2003

http://www.db2mag.com/homepage.shtml

� Gulutzan, P. and Pelzer, T., SQL Performance Tuning, AddisonWesley
Publishing Co., September 2002, ISBN 0-201-79169-2

� “Everything You Wanted to Know About DB2 Universal Database
Processes”, D. Snow and R. F. Chong

http://www7b.software.ibm.com/dmdd/library/techarticle/0304chong/0304chong.
html

� “Database Technology Leaps Ahead”, P. K. Gunning, Q4, 2002

http://www.db2mag.com/homepage.shtml

� “Tuning up for OLTP and Data Warehousing”, S. Hayes and P. K. Gunning,
Q4, 2002

http://www.db2mag.com/homepage.shtml

� “Advanced Performance Diagnostics in DB2 for Unix, Linux and Windows”,
Steve Rees, IBM Data Management Technical Conference Proceedings,
September 2002

� “Maximize DB2 UDB for Linux, Unix, and Windows Performance -- Eliminate
the Problems”, Melanie Stopfer, IBM Data Management Technical
Conference Proceedings, September 2002

492 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

http://www.db2mag.com/homepage.shtml
http://www.db2mag.com/homepage.shtml
http://www.db2mag.com/homepage.shtml
http://www.db2mag.com/homepage.shtml

� “Where Did My Memory Go? - Memory Usage in UDB”, Ian Maione, IDUG
Conference Proceedings, October 2001

� “DB2 Tuning Tips for OLTP Applications”, Yongli An and Peter Shum, IBM
Toronto Lab, IBM Canada, July 2001
http://www-900.ibm.com/developerWorks/cn/dmdd/library/techarticles/0107ansh
um/0107anshum_eng.shtml

Online resources
These Web sites and URLs are also relevant as further information sources:

� The IBM DB2 Technical Support site with pointers to documentation,
downloads and other support options.

http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v8pubs.
d2w/en_main

� The IBM DB2 Developer Domain site contains spec sheets, white papers, and
technical and product documentation. The site includes a search engine.

http://www7b.software.ibm.com/dmdd/library/

� International DB2 Users Group.

http://www.idug.org/html/home.asp

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

http://www.redbooks.ibm.com/

Help from IBM
IBM Support and downloads. This site is a general entry point to all IBM support,
with links to product documentation, downlaods, fixes, etc.

http://www.ibm.com/support/us/

IBM Global Services

ibm.com/services

 Related publications 493

http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v8pubs.d2w/en_main
http://www7b.software.ibm.com/dmdd/library/
http://www.idug.org/html/home.asp
http://www-900.ibm.com/developerWorks/cn/dmdd/library/techarticles/0107anshum/0107anshum_eng.shtml

494 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

Index

Symbols
(Application Group) / Application Shared Memory
38

Numerics
64-bit 357

A
active log 210, 213–214
administration notification log 79, 209, 243
Agent / Application Shared Memory

aslheapsz 44
rqrioblk 45

agent pool 27, 233
Agent private memory 40, 104

agent_stack_sz 43
applheapsz 42
java_heap_sz 43
query_heap_sz 42
rqrioblk 43
stat_heap_sz 42
stmtheap 42

Agent/Application Shared Memory 43, 104
Agent/Local Application Shared Memory 31
agent_stack_sz 43, 48
agentpri 59, 298
aio 334
AIX Logical Volume Manager 355
AIX platform 332

DB2 process segment register use 340
DB2 specific recommendations 362
Disk and filesystem considerations 346
Disk subsystem recommendations 358
Disk subsystem review 346
Disk technology fundamentals 348
filemon 366
Filesystem recommendations 359
General file system performance 358
iostat 369
lsps 369
Memory considerations 335
nmon 372

© Copyright IBM Corp. 2004. All rights reserved.
Operating system considerations 332
Paging space 339
ps 373
sar 376
svmon 377
system view of memory 337
virtual memory architecture review 335
vmstat 378
vmtune 379

appgroup_mem_sz 38, 40, 53
appl_ctl_heap_sz 39–40, 53, 342
applheapsz 42, 48, 285
application control block 21
Application design considerations 111

index design 137
Table design 111
Table space design 141

Application global memory 104
application group 19, 22, 48
Application Group Shared Memory 38

appgroup_mem_sz 40
appl_ctl_heap_sz 40
groupheap_ratio 40

Application Shared Memory 38
archive logging 209, 211, 215
aslheapsz 31, 43–44, 59, 184, 288, 291, 342
audit_buf_sz 33, 35, 59
autoconfigure 54, 57

admin_priority 58
bp_resizeable 58
is_populated 58
isolation 58
mem_percent 58
num_local_apps 58
num_remote_apps 58
num_stmts 58
tpm 58
workload_type 58

avg_appls 61
AWE 242, 245, 383

B
backup 35, 304

 495

best practices guidelines 9
BI 109–110, 114–115, 117–118, 125, 140, 147,
150, 159, 198, 202, 211, 218, 226, 234, 251, 253,
258, 279, 284

characteristics 109
blk_log_dsk_full 209, 221
block index 125
block-based buffer pools 22, 244, 248, 476
block-based I/O 245
blocking cursors 183
BLOCKSIZE 23, 244, 249
BPM 15, 48
BSU 15
buffer pools 22, 35, 74, 145, 238

Block-based buffer pools 244, 248
Buffer pool assignment with multiple buffer pools
248
Buffer pool hit ratios 251
chngpgs_thresh and num_iocleaners consider-
ations 249
Clean pages 240
Dirty pages 239
Dynamic buffer pools 242
flow 238
Hidden buffer pools 243
IBMDEFAULTBP 243
In use pages 239
Main characteristics 242
Memory allocation 242
num_ioservers considerations 250
overhead 246
Single or multiple buffer pools? 247
Size of the buffer pool? 247

C
catalog_cache_sz 53
catalogcache_sz 36–37, 47, 61, 237, 272
cell density 123, 125
cell utilization 125, 128
chngpgs_thresh 48, 53, 61, 241, 249, 253
circular logging 209, 211
CLI/ODBC 185
CLI/ODBC/JDBC trace 67
clustering index 139
commit grouping 219
communication buffer 181–182
compound SQL 184

Atomic 184

Non-atomic 184
COMPRESS SYSTEM DEFAULT 116, 475
concurrency 186
Configuration Advisor 54
connection concentrator 19–20, 45, 49, 233, 477

dispatcher 21
logical agent scheduler 22

Connection considerations 226
container 145

Device containers 145
Directory containers 145
File containers 145
How many containers 147
multiple containers 153
Single or multiple 148
Size of containers 149
striped containers 152
striping 147

coordinator agent 47–48
counter 69
Creating an Event Monitor 75

D
data placement 25
Data SARGable predicates 162
data type conversions 183
data types 115
database configuration parameter

applheapsz 286
aslheapsz 184, 288
avg_appls 61
blk_log_dsk_full 209
catalogcache_sz 61, 273, 284
chngpgs_thresh 61, 241
database_memory 36
dbheap 35, 273, 284
dlchktime 24, 198
estore_seg_sz 36, 343
java_heap_sz 61
locklist 35, 61, 198, 262
logbufsz 35, 61, 210, 284, 321
logfilsz 209
logpath 210
logprimary 209, 213
logretain 208
logsecond 213
maxappls 62, 229, 236, 273
maxfilop 300

496 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

maxlocks 198, 260
mincommit 24, 210, 221
mirrorlogpath 208
multipage_alloc 141
num_estore_segs 36, 343
num_iocleaners 23, 62, 241
num_ioservers 23, 62
pckcachesz 35, 62, 273, 284
rqrioblk 184
seqdetect 62, 240
sheapthres 60
sheapthres_shr 36, 62, 276
softmax 63, 242
sortheap 62, 275, 313
stmtheap 289
userexit 208
util_heap_sz 35, 273, 313, 321

Database global memory 104
database manager configuration parameter

agentpri 59, 299
aslheapsz 31, 43, 59, 291
audit_buf_sz 33, 59
chngpgs_thresh 249
diaglevel 85
instance_memory 34
intra_parallel 27, 36, 38, 229, 297
java_heap_sz 288
max_connections 18, 20, 38, 227
max_coordagents 18, 20, 38, 231
max_querydegree 298
maxagents 18, 229
maxappls 18
maxcagents 18, 232
maxtotfilop 301
mon_heap_sz 33
num_initagents 19, 236
num_poolagents 18, 60, 233
query_heap_sz 288
rqrioblk 293
sheapthres 275

database manager configuration parameters
max_connections 36
max_coordagents 36

Database manager shared memory 33, 104
audit_buf_sz 35
instance_memory 34
mon_heap_sz 34

Database shared memory 35–36
catalogcache_sz 37

database_memory 37
dbheap 37
estore_seg_sz 38
locklist 38
num_estore_segs 38
pckcachesz 38
sheapthres_shr 38
util_heap_sz 37

Database System Monitor 68, 224
database_memory 36–37
DB2 agents 17–18

coordinator 18
subagents 18

DB2 hypotheses hierarchy 397, 399
DB2 resource constraints 400

Buffer pool constraints 408
Cache size constraints 409
Connection constraints 401
DB2 application design-related 411
Locking constraints 406
Miscellaneous constraints 410
Sorting constraints 404

DB2 system resource constraints 400
DB2 objects 198

placement 201
DB2 objects placement 200
DB2 optimizer 113, 117, 129–130, 161, 181, 475
DB2 PE

Environment structure 92
Main components 90
Performance Expert Agent 91
Server 92

DB2 PE Client 92
DB2 Performance Expert 88
DB2 processes 28
DB2 registry/environment variables 63

DB2_AVOID_PREFETCH 64
DB2_AWE 66
DB2_ENABLE_BUFPD 64
DB2_MMAP_READ 65
DB2_MMAP_WRITE 65
DB2_OVERRIDE_BPF 64
DB2_PARALLEL_IO 65
DB2MAXFSCRSEARCH 64
DB2MEMDISCLAIM 65
DB2MEMMAXFREE 65
DB2NTMEMSIZE 66
DB2NTNOCACHE 66

DB2 stripe 353

 Index 497

DB2 UDB architecture
Base Support Utilities (BSU) 15
Buffer Pool Manager (BPM) 15
Common services 16
Data Management Services (DMS) 15
Data Protection Services (DPS) 15
Main components 14
Operating System Services (OSS) 16
processes 17
Relational Data Services (RDS) 15
Run-time Interpreter (RTI) 15
Sort List Services (SLS) 15

DB2 UDB ESE Version 8
Compression of NULLS and DEFAULT 475
Connection concentrator 477
DMS container enhancements 478
Faster page cleaners 477
Load enhancements 476
Logging enhancements 478
Manageability enhancements 479
MQT enhancements 475
Multidimensional clustering 474
Prefetching enhancements 476
RUNSTATS enhancements 478
Stored procedures and UDFs thread-based
model 478
Type 2 indexes 477

DB2_AVOID_PREFETCH 64
DB2_AWE 66, 384
DB2_DIRECT_IO 481
DB2_ENABLE_BUFPD 64
DB2_EVALUNCOMMITTED 483
DB2_FORCE_FCM_BP 342
DB2_MMAP_READ 65, 346
DB2_MMAP_WRITE 65, 346
DB2_OVERRIDE_BPF 64, 244
DB2_PARALLEL_IO 65, 153, 362
DB2_PINNED_BP 345
DB2_SKIPDELETED 483
DB2_SMS_TRUNC_TABLE_THRESH 483
DB2_USE_ALTERNATE_PAGE_CLEANING 482
DB2_USE_PAGE_CONTAINER_TAG 152
db2advis 93
db2agent 26, 226, 239
db2agntp 27, 226, 239
db2batch 82
db2dasrrm 382
db2diag.log 85
db2disp 47

db2dlock 24
db2empfa 141, 150
db2eva 77
db2fmp 26, 44, 287
db2icpcm 26
db2ipccm 46
db2licd 382
db2loggr 210
DB2MAXFSCRSEARCH 64
DB2MEMDISCLAIM 65, 340, 345, 385
DB2MEMMAXFREE 65, 340, 345, 385
db2mtrk 103
DB2NTMEMSIZE 66
DB2NTNOCACHE 66
db2pfchr 239–240, 248
db2sysc 17, 25, 382
db2tcpcm 26, 46
dbheap 35–37, 48, 53, 76, 218, 273, 284
deadlock detector 24
DEADLOCK WITH DETAIL 73
deadlocks 24, 193, 196
Default database directory structure 199
Deferred Prepare 185
deferred refresh 130, 133
Design Advisor 93, 138
dft_degree 297
DFT_MON_BUFPOOL 70, 223
DFT_MON_LOCK 70, 223, 225
DFT_MON_SORT 70, 223
DFT_MON_STMT 70, 223, 225
DFT_MON_TABLE 70, 223
DFT_MON_TIMESTAMP 70, 223, 225
DFT_MON_UOW 70, 223
DFT_PREFETCH_SZ 154
DGTT 111, 114, 141, 202
diaglevel 85
dimensions 122
dirty pages 23
DISABLE QUERY OPTIMIZATION 118
dlchktime 24, 198
DMS 15, 48, 161
DMS container 478
DMS containers 355
DMS table space 141, 143, 146, 149, 151, 205

advantages 143
BEGIN NEW STRIPE SET 144, 149
disadvantages 143
spanned tables 144

domain integrity 115

498 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

DPS 15, 48
DTW workload 486
dual logging 478
Dynamic SQL 158

E
EBIZ database 486
EDU 15–16, 25
ESS 352
estore_seg_sz 36, 38, 343
Event Monitor 68, 70, 73–74, 224

Activating an Event Monitor 76
EVENT MONITOR STATE 76
FLUSH EVENT MONITOR 77
Viewing Event Monitor output 77

Event Monitor event types
BUFFERPOOLS 74
CONNECTIONS 73
DATABASE 74
DEADLOCK 73
DEADLOCK WITH DETAIL 73
STATEMENT 73
TABLES 74
TABLESPACES 74
TRANSACTIONS 73

Event Monitor Target Tables 75
Exception event scenarios 412

Lock waits due to default LOCKTIMEOUT value
(OLTP) 413
Poor SQL performance due to missing indexes
(OLTP) 426
Poor SQL performance due to unused MQTs
(BI) 437

Exception monitoring 7, 9
Explain 94
Explain tables 96
export 307
extended storage cache 36, 245
extent size 123, 126, 150, 152–153, 155, 249

F
FAStT disk subsystems 354
FETCH FIRST n ROWS ONLY 182
filemon 366, 389
firewall 26
FOR FETCH ONLY 182, 195
fsbufs 358
full refresh 136

G
gauge 69
groupheap_ratio 39–40, 53

H
hdisks 365
Health Center 100
Health indicators 101
Heath Monitor 100
hypotheses validation 397

I
I/O placement considerations 198

Collect disk utilization statistics 203
Determine relationship between disk utilization
and table spaces 206
Identify table space activity 203
Map file systems to underlying disks 206
Revisit I/O placement decisions if necessary
207

immediate refresh 131, 133
import 309
index design 137
Index Manager 161–162
Index SARGable predicates 162
indexes 93, 137

free space 140
NLEVELS 140
PCTFREE 140
Type 1 138
Type 2 138

infinite log space 210
informational constraints 117
instance_memory 34
intra_parallel 27, 36, 38, 229, 275, 297
iostat 368
ipclean 344
ipcs 344
isolation level 192, 197

J
java_heap_sz 43, 61, 287
JFS file systems 147

L
Large object Manager 161
LARGE TABLE SPACE 141, 200, 202

 Index 499

latency 130
list (sequential) prefetch 241
listeners 27
load 35, 311

Building indexes 319
Combining multistep operations 319
Loading an MDC table 320

LOB 146, 162
lock conversion 191
lock conversions 195
lock escalation 193
lock modes 188
locking 186

compatibility matrix 191
Cursor Stability (CS) 192
deadlocks 193
Hierarchy of locks 187
isolation level 192, 197
lock conversion 191
lock escalation 193
lock type compatibility 191
Read Stability (RS) 192
Repeatable Read 192
Uncommitted Read (UR) 192

locking contention 133
locklist 35, 38, 48, 53, 61, 193, 198, 260, 262
LOCKSIZE 194
log utilization 222
logbufsz 35, 48, 53, 61, 210, 218, 284, 321
logfilsiz 214
logfilsz 209
logging 23, 133, 201, 207

Archive logging 208
blk_log_dsk_full db cfg 221
Choice of the type of logging 211
Circular logging 208
File system or raw logical volumes for the logs
212
infinite log space 210
Log utilization 222
logbufsz db cfg parameter 217
logprimary,logsecond and logfilsz db cfg param-
eters 213
mincommit 219
overview 207
Performance drivers 211
Single or dual logging 212
switching 213

logical agent 48

logprimary 209, 213–215
logretain 208, 210
logsecond 209, 213–214
Long object Manager 161
LSN Gap 242
lsps 369
LUNs 353

M
max_connections 18, 36, 38, 53, 227
max_coordagents 18, 36, 47, 49, 53, 227, 231
max_querydegree 297
maxagents 18, 47, 53, 228–229
maxAIOservers 335
maxappls 18, 47, 62, 229, 236, 273
maxcagents 18, 47, 232
maxfilop 300
maxlocks 48, 193, 198, 260
maxperm 338, 345
maxpgahead 362
maxtotfilop 300
MDCs 111–112, 118, 474

block index 119
block map 119
cell utilization 128
composite block index 119
create a MDC table 126
Determine cell utilization 127
Determine the number of cells 127
Determine the space occupied per cell 127
space utilization 126

Memory model 30
Memory Tracker 103
Memory Visualizer 103, 370, 390
mincommit 24, 48, 53, 210, 219–220
minperm 338, 345
mirroring 25
mirroring and striping data 355
mirrorlogpath 208
mon_heap_sz 33–34
Monitor switch settings 223
monotonic 125
MQTs/ASTs 111, 113, 128–129, 475

Design Advisor Wizard 136
design considerations 128
functionality 130
MAINTAINED BY SYSTEM 132
MAINTAINED BY USER 132

500 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

non-aggregate 129
multipage_alloc 141
multiple buffer pools 247
multiple table spaces per table 144

N
network overheads 183
nmon 372
non-sargable predicates 16
NOTIFYLEVEL 81
num_estore_segs 36, 38, 343
num_initagents 19, 235
num_iocleaners 23, 53, 62, 241, 249, 253, 363
num_ioservers 23, 47–48, 53, 62, 240, 363
num_poolagents 18, 60, 233–234
NUMBLOCKPAGES 244, 253
numfsbufs 361
numperm 339

O
OLTP 108, 110, 114–115, 117–118, 140, 147–148,
150, 159–160, 194, 198, 202, 211–212, 215, 218,
225, 234, 251–252, 258, 279, 284, 286

characteristics 108
Online/realtime event monitoring 6
Online/Realtime monitoring scenarios 462

Lock contention (OLTP) 463
Operation Merging 157
Operation moment 157
OPTIMIZE FOR n ROWS 181
OSS 16, 48
overheads 225

P
package 157
page cleaners 23, 477
page size 149
paging 337, 385
paging space 339
parameter marker 159–160
pbufs 358
pckcachesz 35–36, 38, 47, 53, 62, 237, 273, 284
pdisks 365–366
performance drivers 110
performance management 2–4, 88

best practices 9
hypotheses 9

hypotheses validation hierarchy 10
performance management cycle 4
performance objectives 3
proactive 2
reactive 2

Performance Monitor 390
Performance registry variable for Windows NT,
2000 & 2003 platform 66
post-threshold sorts 275
Predicate translation 157
predicate types 161
predicates

Data SARGable predicates 162
Index SARGable 278
Index SARGable predicates 162
range delimiting predicates 162
Residual predicates 162

prefetch size 152, 154
prefetchers 23, 239, 248, 250
primary log 209, 213–214
Problem determination methodology 7
process model 25
ps 373

Q
query optimization 156, 158, 181
query rewrite 155

Operation Merging 157
Operation moment 157
Predicate translation 157

query_heap_sz 42, 44, 48, 288

R
RAID 25, 148, 152–153, 349
Range delimiting predicates 162
RAW devices 143
raw logical volume 212

advantages 212
disadvantages 212

RDS 15, 47, 161
Redbooks Web site 493

Contact us xxiv
referential constraints 117
referential integrity

informational 136
REFRESH DEFERRED 132, 134
REFRESH IMMEDIATE 134
registry variable

 Index 501

DB2_AWE 384
DB2_DIRECT_IO 481
DB2_EVALUNCOMMITTED 483
DB2_FORCE_FCM_BP 342
DB2_MMAP_READ 346
DB2_MMAP_WRITE 346
DB2_PARALLEL_IO 362
DB2_PINNED_BP 345
DB2_SKIPDELETED 483
DB2_USE_ALTERNATE_PAGE_CLEANING
482–483
DB2MEMDISCLAIM 340, 345, 385
DB2MEMMAXFREE 340, 345, 385

REGULAR TABLE SPACE 141, 200
reorg 119, 295
reorgchk 295
Residual predicates 162
restore 35
Routine monitoring 5, 225
Routine monitoring scenarios 448

Deteriorating buffer pool hit ratios (OLTP) 456
Deteriorating space utilization conditions (BI)
449

row blocking 182
rqrioblk 43, 45, 184, 293
RTI 15
runstats 295, 478

DETAILED 296
DETAILED clause 326
LIKE STATISTICS clause 327
NUM_FREQVALUES 296
NUM_QUANTILES 297

S
SAN storage 351
sar 376
sargable predicates 16
scattered read 244
secondary log 209, 214
Segment register 342
SEGSZ 343
seqdetect 62, 240
sequential detection 153, 240
sequential prefetch 22, 152–153, 240, 245, 249
sheapthres 48, 53, 60, 275
sheapthres_shr 36, 38, 48, 53, 62, 276
SIGDANGER 339
single buffer pool 247

single table per table space 144
advantages 144
disadvantages 144

SIZE 47, 53
SLS 15
SMS containers 354
SMS table space 141–142, 146, 149, 205

advantages 142
disadvantages 142
multipage_alloc 141

Snapshot Monitor 68–69, 73, 223
Snapshot Monitor switches 223

BI 225
DFT_MON_BUFPOOL 70
DFT_MON_LOCK 70
DFT_MON_SORT 70
DFT_MON_STMT 70
DFT_MON_TABLE 70
DFT_MON_TIMESTAMP 70
DFT_MON_UOW 70
OLTP 225
Typical overheads 225

softmax 53, 63, 242
sortheap 48, 53, 62, 275, 313
sorts

non-overflowed sort 276
non-piped sort 277
overflowed sort 276
piped sort 277

spanned tables 145
SQL

Dynamic or static SQL 158
writing efficientSQL 155

SQL compiler 155
Check Semantics 157
Federated Pushdown Analysis 157
Parse Query 157
Remote SQL Generation 157
Rewrite Query 157

SQL sections 161
SSA 366
staging table 132–133
stat_heap_sz 42
Static SQL 158
statistics 160
stmtheap 42, 47, 289
stored procedure 478
striping 25
striping data and prefetch issues 356

502 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

subagents 47
svmon 377
System catalog 200
System catalog table space 201
System environment considerations 198

Buffer pool considerations 238
Catalog cache considerations 272
Configuration Advisor 302
Connection considerations 226
I/O placement considerations 198
Locking considerations 260
Log considerations 207
Monitor switch settings 223
Other memory considerations 283
Package cache considerations 269
Sort considerations 275

system maintained 132
SYSTEM TEMPORARY TABLE SPACE 141, 202

T
Table design 111

COMPRESS SYSTEM DEFAULT 116
data types 115
informational constraints 117
normalization 114
referential constraints 117
Type of table 112
VALUE COMPRESSION 116

Table Manager 161
Table space

activity/priority compatibility matrix 202
choosing table space containers 145
Extent size for the table space 150
page size 149
Prefetch size for the table space 152

Table space activity/priority compatibility matrix
202
Table space design

LARGE TABLE SPACE 141
REGULAR TABLE SPACE 141
SYSTEM TEMPORARY TABLE SPACE 141
USER TEMPORARY TABLE SPACE 141

table spaces per table 144
tables per table space 144

advantages 144
disadvantages 144

Tablespace design 141
Task Manager 392

TEMPORARY TABLE SPACE 200, 202
timeout 191
timestamp 69
Trade 2 application 487
Trade 2 benchmark 487
transaction/query flow 45
TRANSFERRATE 362
Type 1 index 138
Type 2 index 138, 477, 483
typical problem determination methodology 8

U
UDF/Agent Shared Memory 31
UDFs 478
User Defined Data Types 115
user maintained 132
USER TEMPORARY TABLE SPACE 141, 202
userexit 208, 210
util_heap_sz 35–37, 53, 273, 313, 321

V
VALUE COMPRESSION 116, 475
vectored I/O 244
vmstat 378
vmtune 379

W
water mark 69, 145
WebSphere Performance Benchmark Sample 487
WebSphere Performance Tools 488
Windows platform 381

DB2-specific recommendations 383, 385, 387
Disk and filesystem considerations 386
Disk subsystem overview 386
Disk subsystem recommendations 387
filemon 389
Filesystem recommendations 387
General performance recommendations 383,
385
Mapping filesystems to physical disks 388
Memory considerations 383
Operating system considerations 382
Performance Monitor 390
Task Manager 392
virtual memory architecture review 384
Windows review 382

write-ahead logging 24

 Index 503

Z
z-lock 136

504 DB2 UDB ESE V8 Performance Guide for High Performance OLTP and BI

(1.0” spine)
0.875”<->

1.498”
460 <->

 788 pages

DB2 UDB ESE V8 non-DPF Perform
ance

Guide for High Perform
ance OLTP and BI

®

SG24-6432-00 ISBN 0738498807

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DB2 UDB ESE V8 non-DPF
Performance Guide for
High Performance OLTP and BI

Overview of DB2 UDB
ESE V8 non-DPF
architecture

Best practices for
optimal performance

Problem
determination
scenarios

This IBM Redbook provides detailed information on
implementing high performance OLTP and BI applications in
DB2 UDB ESE V8 non-DPF environments involving AIX and
Windows 2000 platforms. It is aimed at a target audience of
experienced DB2 application developers and database
administrators (DBAs).

We provide an overview of the architecture of a DB2 UDB V8
non-DPF environment from a performance perspective, and
describe key performance drivers in OLTP, BI, and mixed
workload environments.

This redbook’s primary focus is a single partition (non-DPF)
environment, and we provide best practices to achieve
optimal application and system performance in OLTP, BI, and
mixed workload environments.

Finally, we discuss some of the commonly encountered
problems faced by a DBA when managing a DB2
environment, and describe techniques for problem diagnosis
using typical problem scenarios.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction to performance management
	1.1 Introduction
	1.2 Performance management
	1.3 Types of monitoring
	1.3.1 Routine monitoring
	1.3.2 Online/realtime event monitoring
	1.3.3 Exception monitoring

	1.4 Problem determination methodology

	Chapter 2. DB2 UDB architecture overview
	2.1 Introduction
	2.2 Main components of DB2
	2.2.1 High level overview of main DB2 components
	2.2.2 High level overview of DB2 architecture and processes
	2.2.3 Process model
	2.2.4 Memory model

	2.3 Single user transaction/query flow
	2.3.1 Transaction flow with connection concentrator enabled
	2.3.2 Transaction flow with connection concentrator disabled

	2.4 Multi-user (concurrent) transaction/query flow
	2.5 Key performance knobs
	2.5.1 Configuration Advisor and AUTOCONFIGURE
	2.5.2 Database Manager (DBM) configuration parameters
	2.5.3 Database (DB) configuration parameters
	2.5.4 DB2 registry and environment variables

	2.6 Performance monitoring facilities
	2.6.1 CLI/ODBC/JDBC trace
	2.6.2 Database System Monitor
	2.6.3 DB2 administration notification log
	2.6.4 db2batch
	2.6.5 db2diag.log
	2.6.6 DB2 Performance Expert
	2.6.7 Design Advisor
	2.6.8 Explain and Visual Explain
	2.6.9 Heath Monitor and Health Center
	2.6.10 Memory Tracker
	2.6.11 Memory Visualizer

	Chapter 3. Application design and system performance considerations
	3.1 OLTP and BI characteristics
	3.1.1 OLTP characteristics
	3.1.2 BI characteristics

	3.2 Key performance drivers
	3.3 Application design considerations
	3.3.1 Table design
	3.3.2 MDC design considerations
	3.3.3 MQT/AST design considerations
	3.3.4 Index design
	3.3.5 Table space design
	3.3.6 Writing efficient SQL
	3.3.7 Concurrency

	3.4 System environment considerations
	3.4.1 I/O placement considerations
	3.4.2 Log considerations
	3.4.3 Monitor switch settings
	3.4.4 Connection considerations
	3.4.5 Buffer pool considerations
	3.4.6 Locking considerations
	3.4.7 Package cache considerations
	3.4.8 Catalog cache considerations
	3.4.9 Sort considerations
	3.4.10 Other memory considerations
	3.4.11 Miscellaneous considerations

	Chapter 4. Command and utility considerations
	4.1 Introduction
	4.2 Backup
	4.2.1 Brief description
	4.2.2 Performance considerations
	4.2.3 Best practices

	4.3 Export
	4.3.1 Brief description
	4.3.2 Performance considerations
	4.3.3 Best practices

	4.4 Import
	4.4.1 Brief description
	4.4.2 Performance considerations
	4.4.3 Best practices

	4.5 Load
	4.5.1 Brief description
	4.5.2 Performance considerations
	4.5.3 Best practices

	4.6 Reorg
	4.6.1 Brief description
	4.6.2 Performance considerations
	4.6.3 Best practices

	4.7 Restore
	4.7.1 Brief description
	4.7.2 Performance considerations
	4.7.3 Best practices

	4.8 Runstats
	4.8.1 Brief description
	4.8.2 Performance considerations
	4.8.3 Best practices

	Chapter 5. Operating system considerations
	5.1 Introduction
	5.2 AIX platform
	5.2.1 Operating system considerations
	5.2.2 Memory considerations
	5.2.3 Disk and filesystem considerations
	5.2.4 Monitoring and problem determination tools

	5.3 Windows platform
	5.3.1 Operating system considerations
	5.3.2 Memory considerations
	5.3.3 Disk and filesystem considerations
	5.3.4 Monitoring and problem determination tools

	Chapter 6. Problem determination scenarios
	6.1 Introduction
	6.2 DB2 hypotheses hierarchy
	6.2.1 DB2 database server system resource constraints
	6.2.2 DB2 system resource constraints

	6.3 Exception event scenarios
	6.3.1 Lock waits due to default LOCKTIMEOUT value (OLTP)
	6.3.2 Poor SQL performance due to missing indexes (OLTP)
	6.3.3 Poor SQL performance due to unused MQTs (BI)

	6.4 Routine monitoring scenarios
	6.4.1 Deteriorating space utilization conditions (BI)
	6.4.2 Deteriorating buffer pool hit ratios (OLTP)

	6.5 Online/Realtime monitoring scenarios
	6.5.1 Lock contention (OLTP)

	Appendix A. DB2 UDB ESE Version 8 performance enhancements
	A.1 Introduction
	A.2 Application-related performance enhancements
	A.2.1 Multidimensional clustering
	A.2.2 MQT enhancements
	A.2.3 Compression of NULLS and DEFAULT
	A.2.4 Load enhancements

	A.3 System-related performance enhancements
	A.3.1 Prefetching enhancements
	A.3.2 Faster page cleaners
	A.3.3 Connection concentrator
	A.3.4 Type 2 indexes
	A.3.5 Stored procedures and UDFs thread-based model
	A.3.6 DMS container enhancements
	A.3.7 RUNSTATS enhancements
	A.3.8 Logging enhancements
	A.3.9 Manageability enhancements

	A.4 DB2 UDB Version 8.1.4
	A.4.1 Backup compression
	A.4.2 Range-clustered tables
	A.4.3 Direct I/O support on AIX
	A.4.4 Asymmetric index splitting
	A.4.5 Buffer pool memory allocation
	A.4.6 Page cleaning enhancements
	A.4.7 Lock deferral
	A.4.8 Improved sort performance

	Appendix B. Workloads used in the scenarios
	B.1 Introduction
	B.2 DTW workload
	B.3 EBIZ database
	B.4 Trade2 database and application
	B.5 WebSphere Performance Tools (WPT)

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

